Academic Journal

Metric dimension of metric transform and wreath product

التفاصيل البيبلوغرافية
العنوان: Metric dimension of metric transform and wreath product
المؤلفون: B.S. Ponomarchuk
المصدر: Karpatsʹkì Matematičnì Publìkacìï, Vol 11, Iss 2, Pp 418-421 (2019)
بيانات النشر: Vasyl Stefanyk Precarpathian National University, 2019.
سنة النشر: 2019
المجموعة: LCC:Mathematics
مصطلحات موضوعية: metric dimension, metric transform, wreath product, Mathematics, QA1-939
الوصف: Let $(X,d)$ be a metric space. A non-empty subset $A$ of the set $X$ is called resolving set of the metric space $(X,d)$ if for two arbitrary not equal points $u,v$ from $X$ there exists an element $a$ from $A$, such that $d(u,a) \neq d(v,a)$. The smallest of cardinalities of resolving subsets of the set $X$ is called the metric dimension $md(X)$ of the metric space $(X,d)$. In general, finding the metric dimension is an NP-hard problem. In this paper, metric dimension for metric transform and wreath product of metric spaces are provided. It is shown that the metric dimension of an arbitrary metric space is equal to the metric dimension of its metric transform.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
Ukrainian
تدمد: 2075-9827
2313-0210
Relation: https://journals.pnu.edu.ua/index.php/cmp/article/view/2119; https://doaj.org/toc/2075-9827; https://doaj.org/toc/2313-0210
DOI: 10.15330/cmp.11.2.418-421
URL الوصول: https://doaj.org/article/8346a7c35fb04934b126d020fd5b6fcf
رقم الانضمام: edsdoj.8346a7c35fb04934b126d020fd5b6fcf
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20759827
23130210
DOI:10.15330/cmp.11.2.418-421