Academic Journal

AI perceives like a local: predicting citizen deprivation perception using satellite imagery

التفاصيل البيبلوغرافية
العنوان: AI perceives like a local: predicting citizen deprivation perception using satellite imagery
المؤلفون: Angela Abascal, Sabine Vanhuysse, Taïs Grippa, Ignacio Rodriguez-Carreño, Stefanos Georganos, Jiong Wang, Monika Kuffer, Pablo Martinez-Diez, Mar Santamaria-Varas, Eleonore Wolff
المصدر: npj Urban Sustainability, Vol 4, Iss 1, Pp 1-14 (2024)
بيانات النشر: Nature Portfolio, 2024.
سنة النشر: 2024
المجموعة: LCC:Urbanization. City and country
LCC:City planning
مصطلحات موضوعية: Urbanization. City and country, HT361-384, City planning, HT165.5-169.9
الوصف: Abstract Deprived urban areas, commonly referred to as ‘slums,’ are the consequence of unprecedented urbanisation. Previous studies have highlighted the potential of Artificial Intelligence (AI) and Earth Observation (EO) in capturing physical aspects of urban deprivation. However, little research has explored AI’s ability to predict how locals perceive deprivation. This research aims to develop a method to predict citizens’ perception of deprivation using satellite imagery, citizen science, and AI. A deprivation perception score was computed from slum-citizens’ votes. Then, AI was used to model this score, and results indicate that it can effectively predict perception, with deep learning outperforming conventional machine learning. By leveraging AI and EO, policymakers can comprehend the underlying patterns of urban deprivation, enabling targeted interventions based on citizens’ needs. As over a quarter of the global urban population resides in slums, this tool can help prioritise citizens’ requirements, providing evidence for implementing urban upgrading policies aligned with SDG-11.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2661-8001
Relation: https://doaj.org/toc/2661-8001
DOI: 10.1038/s42949-024-00156-x
URL الوصول: https://doaj.org/article/81c113f45f8d41099cf9602f5d5afaaa
رقم الانضمام: edsdoj.81c113f45f8d41099cf9602f5d5afaaa
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26618001
DOI:10.1038/s42949-024-00156-x