Academic Journal

Intracranial Hemorrhage Segmentation Using A Deep Convolutional Model

التفاصيل البيبلوغرافية
العنوان: Intracranial Hemorrhage Segmentation Using A Deep Convolutional Model
المؤلفون: Murtadha D. Hssayeni, Muayad S. Croock, Aymen D. Salman, Hassan Falah Al-khafaji, Zakaria A. Yahya, Behnaz Ghoraani
المصدر: Data, Vol 5, Iss 1, p 14 (2020)
بيانات النشر: MDPI AG, 2020.
سنة النشر: 2020
المجموعة: LCC:Bibliography. Library science. Information resources
مصطلحات موضوعية: intracranial hemorrhage segmentation, ich detection, fully convolutional network, u-net, ct scans dataset, Bibliography. Library science. Information resources
الوصف: Traumatic brain injuries may cause intracranial hemorrhages (ICH). ICH could lead to disability or death if it is not accurately diagnosed and treated in a time-sensitive procedure. The current clinical protocol to diagnose ICH is examining Computerized Tomography (CT) scans by radiologists to detect ICH and localize its regions. However, this process relies heavily on the availability of an experienced radiologist. In this paper, we designed a study protocol to collect a dataset of 82 CT scans of subjects with a traumatic brain injury. Next, the ICH regions were manually delineated in each slice by a consensus decision of two radiologists. The dataset is publicly available online at the PhysioNet repository for future analysis and comparisons. In addition to publishing the dataset, which is the main purpose of this manuscript, we implemented a deep Fully Convolutional Networks (FCNs), known as U-Net, to segment the ICH regions from the CT scans in a fully-automated manner. The method as a proof of concept achieved a Dice coefficient of 0.31 for the ICH segmentation based on 5-fold cross-validation.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2306-5729
Relation: https://www.mdpi.com/2306-5729/5/1/14; https://doaj.org/toc/2306-5729
DOI: 10.3390/data5010014
URL الوصول: https://doaj.org/article/cc7eea96d5b945ccb9db242e369376e5
رقم الانضمام: edsdoj.7eea96d5b945ccb9db242e369376e5
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:23065729
DOI:10.3390/data5010014