Academic Journal

A combinatorial proof of the Gaussian product inequality beyond the MTP2 case

التفاصيل البيبلوغرافية
العنوان: A combinatorial proof of the Gaussian product inequality beyond the MTP2 case
المؤلفون: Genest Christian, Ouimet Frédéric
المصدر: Dependence Modeling, Vol 10, Iss 1, Pp 236-244 (2022)
بيانات النشر: De Gruyter, 2022.
سنة النشر: 2022
المجموعة: LCC:Science (General)
LCC:Mathematics
مصطلحات موضوعية: complete monotonicity, gamma function, gaussian product inequality, gaussian random vector, moment inequality, multinomial, multivariate normal, polygamma function, primary 60e15, secondary 05a20, 33b15, 62e15, 62h10, 62h12, Science (General), Q1-390, Mathematics, QA1-939
الوصف: A combinatorial proof of the Gaussian product inequality (GPI) is given under the assumption that each component of a centered Gaussian random vector X=(X1,…,Xd){\boldsymbol{X}}=\left({X}_{1},\ldots ,{X}_{d}) of arbitrary length can be written as a linear combination, with coefficients of identical sign, of the components of a standard Gaussian random vector. This condition on X{\boldsymbol{X}} is shown to be strictly weaker than the assumption that the density of the random vector (∣X1∣,…,∣Xd∣)\left(| {X}_{1}| ,\ldots ,| {X}_{d}| ) is multivariate totally positive of order 2, abbreviated MTP2{\text{MTP}}_{2}, for which the GPI is already known to hold. Under this condition, the paper highlights a new link between the GPI and the monotonicity of a certain ratio of gamma functions.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2300-2298
Relation: https://doaj.org/toc/2300-2298
DOI: 10.1515/demo-2022-0116
URL الوصول: https://doaj.org/article/7c9b1e90d6614bba8722b644ace788d4
رقم الانضمام: edsdoj.7c9b1e90d6614bba8722b644ace788d4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:23002298
DOI:10.1515/demo-2022-0116