Academic Journal

A transparent artificial intelligence framework to assess lung disease in pulmonary hypertension

التفاصيل البيبلوغرافية
العنوان: A transparent artificial intelligence framework to assess lung disease in pulmonary hypertension
المؤلفون: Michail Mamalakis, Krit Dwivedi, Michael Sharkey, Samer Alabed, David Kiely, Andrew J. Swift
المصدر: Scientific Reports, Vol 13, Iss 1, Pp 1-17 (2023)
بيانات النشر: Nature Portfolio, 2023.
سنة النشر: 2023
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Abstract Recent studies have recognized the importance of characterizing the extent of lung disease in pulmonary hypertension patients by using Computed Tomography. The trustworthiness of an artificial intelligence system is linked with the depth of the evaluation in functional, operational, usability, safety and validation dimensions. The safety and validation of an artificial tool is linked to the uncertainty estimation of the model’s prediction. On the other hand, the functionality, operation and usability can be achieved by explainable deep learning approaches which can verify the learning patterns and use of the network from a generalized point of view. We developed an artificial intelligence framework to map the 3D anatomical models of patients with lung disease in pulmonary hypertension. To verify the trustworthiness of the framework we studied the uncertainty estimation of the network’s prediction, and we explained the learning patterns of the network. Therefore, a new generalized technique combining local explainable and interpretable dimensionality reduction approaches (PCA-GradCam, PCA-Shape) was developed. Our open-source software framework was evaluated in unbiased validation datasets achieving accurate, robust and generalized results.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
81879458
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-023-30503-4
URL الوصول: https://doaj.org/article/7b81879458204bb3a1be2c29fde0e948
رقم الانضمام: edsdoj.7b81879458204bb3a1be2c29fde0e948
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
81879458
DOI:10.1038/s41598-023-30503-4