Academic Journal

Infinite-Dimensional Quantum Entropy: The Unified Entropy Case

التفاصيل البيبلوغرافية
العنوان: Infinite-Dimensional Quantum Entropy: The Unified Entropy Case
المؤلفون: Roman Gielerak, Joanna Wiśniewska, Marek Sawerwain
المصدر: Entropy, Vol 26, Iss 12, p 1070 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Science
LCC:Astrophysics
LCC:Physics
مصطلحات موضوعية: quantum entropies, unified entropy, Fredholm determinants, numerical determinants, Science, Astrophysics, QB460-466, Physics, QC1-999
الوصف: Infinite-dimensional systems play an important role in the continuous-variable quantum computation model, which can compete with a more standard approach based on qubit and quantum circuit computation models. But, in many cases, the value of entropy unfortunately cannot be easily computed for states originating from an infinite-dimensional Hilbert space. Therefore, in this article, the unified quantum entropy (which extends the standard von Neumann entropy) notion is extended to the case of infinite-dimensional systems by using the Fredholm determinant theory. Some of the known (in the finite-dimensional case) basic properties of the introduced unified entropies were extended to this case study. Certain numerical examples for computing the proposed finite- and infinite-dimensional entropies are outlined as well, which allowed us to calculate the entropy values for infinite Hilbert spaces.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1099-4300
Relation: https://www.mdpi.com/1099-4300/26/12/1070; https://doaj.org/toc/1099-4300
DOI: 10.3390/e26121070
URL الوصول: https://doaj.org/article/77eeda1ef86e4872916c8ae8ae753ec0
رقم الانضمام: edsdoj.77eeda1ef86e4872916c8ae8ae753ec0
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:10994300
DOI:10.3390/e26121070