Academic Journal

Hybrid Dual-Scale Neural Network Model for Tracking Complex Maneuvering UAVs

التفاصيل البيبلوغرافية
العنوان: Hybrid Dual-Scale Neural Network Model for Tracking Complex Maneuvering UAVs
المؤلفون: Yang Gao, Zhihong Gan, Min Chen, He Ma, Xingpeng Mao
المصدر: Drones, Vol 8, Iss 1, p 3 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Motor vehicles. Aeronautics. Astronautics
مصطلحات موضوعية: UAV tracking, UAV trajectory generation, trajectory prediction, interactive multi-model, Motor vehicles. Aeronautics. Astronautics, TL1-4050
الوصف: Accurate tracking and predicting unmanned aerial vehicle (UAV) trajectories are essential to ensure mission success, equipment safety, and data accuracy. Maneuverable UAVs exhibit complex and dynamic motion, and conventional tracking algorithms that rely on predefined models perform poorly when unknown parameters are used. To address this issue, this paper introduces a hybrid dual-scale neural network model based on the generalized regression multi-model and cubature information filter (GRMM-CIF) framework. We have established the GRMM-CIF filtering structure to differentiate motion modes and reduce measurement noise. Furthermore, considering trajectory datasets and rates of motion change, a neural network at different scales will be designed. We propose the dual-scale bidirectional long short-term memory (DS-Bi-LSTM) algorithm to address prediction delays in a multi-model context. Additionally, we employ scale sliding windows and threshold-based decision-making to achieve dual-scale trajectory reconstruction, ultimately enhancing tracking accuracy. Simulation results confirm the effectiveness of our approach in handling the uncertainty of UAV motion and achieving precise estimations.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2504-446X
Relation: https://www.mdpi.com/2504-446X/8/1/3; https://doaj.org/toc/2504-446X
DOI: 10.3390/drones8010003
URL الوصول: https://doaj.org/article/76b73fa3c5bf4315aefce0811a615b5f
رقم الانضمام: edsdoj.76b73fa3c5bf4315aefce0811a615b5f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2504446X
DOI:10.3390/drones8010003