Academic Journal

Traffic demand prediction using a social multiplex networks representation on a multimodal and multisource dataset

التفاصيل البيبلوغرافية
العنوان: Traffic demand prediction using a social multiplex networks representation on a multimodal and multisource dataset
المؤلفون: Panagiotis Fafoutellis, Eleni I. Vlahogianni
المصدر: International Journal of Transportation Science and Technology, Vol 14, Iss , Pp 171-185 (2024)
بيانات النشر: KeAi Communications Co., Ltd., 2024.
سنة النشر: 2024
المجموعة: LCC:Transportation engineering
مصطلحات موضوعية: Multiplex networks, Community detection, Multi-layer graphs, Traffic prediction, Multimodal data, Transportation engineering, TA1001-1280
الوصف: In this paper, a meaningful representation of the road network using multiplex networks and a novel feature selection framework that enhances the predictability of future traffic conditions of an entire network are proposed. Using data on traffic volumes and tickets’ validation from the transportation network of Athens, we were able to develop prediction models that not only achieve very good performance but are also trained efficiently, do not introduce high complexity and, thus, are suitable for real-time operation. More specifically, the network’s nodes (loop detectors and subway/metro stations) are organized as a multilayer graph, each layer representing an hour of the day. Nodes with similar structural properties are then classified in communities and are exploited as features to predict the future demand values of nodes belonging to the same community. The results reveal the potential of the proposed method to provide reliable and accurate predictions.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2046-0430
Relation: http://www.sciencedirect.com/science/article/pii/S2046043023000357; https://doaj.org/toc/2046-0430
DOI: 10.1016/j.ijtst.2023.04.006
URL الوصول: https://doaj.org/article/761b5e4acd64486d8dce5f55e238b5ba
رقم الانضمام: edsdoj.761b5e4acd64486d8dce5f55e238b5ba
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20460430
DOI:10.1016/j.ijtst.2023.04.006