التفاصيل البيبلوغرافية
العنوان: |
Prescriptive price optimization using optimal regression trees |
المؤلفون: |
Shunnosuke Ikeda, Naoki Nishimura, Noriyoshi Sukegawa, Yuichi Takano |
المصدر: |
Operations Research Perspectives, Vol 11, Iss , Pp 100290- (2023) |
بيانات النشر: |
Elsevier, 2023. |
سنة النشر: |
2023 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
Price optimization, Demand forecasting, Regression tree, Mixed-integer optimization, Coordinate ascent, Mathematics, QA1-939 |
الوصف: |
This paper is concerned with prescriptive price optimization, which integrates machine learning models into price optimization to maximize future revenues or profits of multiple items. The prescriptive price optimization requires accurate demand forecasting models because the prediction accuracy of these models has a direct impact on price optimization aimed at increasing revenues and profits. The goal of this paper is to establish a novel framework of prescriptive price optimization using optimal regression trees, which can achieve high prediction accuracy without losing interpretability by means of mixed-integer optimization (MIO) techniques. We use the optimal regression trees for demand forecasting and then formulate the associated price optimization problem as a mixed-integer linear optimization (MILO) problem. We also develop a scalable heuristic algorithm based on the randomized coordinate ascent for efficient price optimization. Simulation results demonstrate the effectiveness of our method for price optimization and the computational efficiency of the heuristic algorithm. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2214-7160 |
Relation: |
http://www.sciencedirect.com/science/article/pii/S2214716023000258; https://doaj.org/toc/2214-7160 |
DOI: |
10.1016/j.orp.2023.100290 |
URL الوصول: |
https://doaj.org/article/75cf0d8c4ee4415f9994e23e39e12a4d |
رقم الانضمام: |
edsdoj.75cf0d8c4ee4415f9994e23e39e12a4d |
قاعدة البيانات: |
Directory of Open Access Journals |