Academic Journal

Prescriptive price optimization using optimal regression trees

التفاصيل البيبلوغرافية
العنوان: Prescriptive price optimization using optimal regression trees
المؤلفون: Shunnosuke Ikeda, Naoki Nishimura, Noriyoshi Sukegawa, Yuichi Takano
المصدر: Operations Research Perspectives, Vol 11, Iss , Pp 100290- (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Mathematics
مصطلحات موضوعية: Price optimization, Demand forecasting, Regression tree, Mixed-integer optimization, Coordinate ascent, Mathematics, QA1-939
الوصف: This paper is concerned with prescriptive price optimization, which integrates machine learning models into price optimization to maximize future revenues or profits of multiple items. The prescriptive price optimization requires accurate demand forecasting models because the prediction accuracy of these models has a direct impact on price optimization aimed at increasing revenues and profits. The goal of this paper is to establish a novel framework of prescriptive price optimization using optimal regression trees, which can achieve high prediction accuracy without losing interpretability by means of mixed-integer optimization (MIO) techniques. We use the optimal regression trees for demand forecasting and then formulate the associated price optimization problem as a mixed-integer linear optimization (MILO) problem. We also develop a scalable heuristic algorithm based on the randomized coordinate ascent for efficient price optimization. Simulation results demonstrate the effectiveness of our method for price optimization and the computational efficiency of the heuristic algorithm.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2214-7160
Relation: http://www.sciencedirect.com/science/article/pii/S2214716023000258; https://doaj.org/toc/2214-7160
DOI: 10.1016/j.orp.2023.100290
URL الوصول: https://doaj.org/article/75cf0d8c4ee4415f9994e23e39e12a4d
رقم الانضمام: edsdoj.75cf0d8c4ee4415f9994e23e39e12a4d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22147160
DOI:10.1016/j.orp.2023.100290