Academic Journal

Reinforcement Learning-Based Adaptive Control of a Piezo-Driven Nanopositioning System

التفاصيل البيبلوغرافية
العنوان: Reinforcement Learning-Based Adaptive Control of a Piezo-Driven Nanopositioning System
المؤلفون: Liheng Chen, Qingsong Xu
المصدر: IEEE Open Journal of the Industrial Electronics Society, Vol 5, Pp 28-40 (2024)
بيانات النشر: IEEE, 2024.
سنة النشر: 2024
المجموعة: LCC:Electronics
LCC:Industrial engineering. Management engineering
مصطلحات موضوعية: Motion control, nanopositioning, piezoelectric actuator, reinforcement learning (RL) adaptive control, Electronics, TK7800-8360, Industrial engineering. Management engineering, T55.4-60.8
الوصف: This article proposes a new reinforcement learning (RL)-based adaptive control design for precision motion control of a two-degree-of-freedom piezoelectric XY nanopositioning system. In this design, an actor-critic structure is developed to eliminate the effects of uncertain nonlinearities and cross-coupling motion between the two working axes. Then, an adaptive parameter adjustment mechanism is designed to optimize the control performance without a priori knowledge of the unknown perturbations. The effectiveness and superiority of the proposed method are verified by performing simulation and experimental studies. The results show that the proposed RL-based adaptive control method provides a better robust performance and smaller tracking error for the nanopositioning system.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2644-1284
Relation: https://ieeexplore.ieee.org/document/10402007/; https://doaj.org/toc/2644-1284
DOI: 10.1109/OJIES.2024.3355192
URL الوصول: https://doaj.org/article/c744e5fd0600461ca7a044057be28116
رقم الانضمام: edsdoj.744e5fd0600461ca7a044057be28116
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26441284
DOI:10.1109/OJIES.2024.3355192