Academic Journal

Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation

التفاصيل البيبلوغرافية
العنوان: Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation
المؤلفون: Jialin Yu, Alexandra I. Cristea, Anoushka Harit, Zhongtian Sun, Olanrewaju Tahir Aduragba, Lei Shi, Noura Al Moubayed
المصدر: AI Open, Vol 4, Iss , Pp 19-32 (2023)
بيانات النشر: KeAi Communications Co. Ltd., 2023.
سنة النشر: 2023
المجموعة: LCC:Electronic computers. Computer science
مصطلحات موضوعية: Deep latent variable models, Paraphrase generation, Semi-supervised learning, Natural language processing, Deep learning, Electronic computers. Computer science, QA75.5-76.95
الوصف: This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which performs latent sequence inference given an observed text. To leverage information from text pairs, we additionally introduce a novel supervised model we call dual directional learning (DDL), which is designed to integrate with our proposed VSAR model. Combining VSAR with DDL (DDL+VSAR) enables us to conduct semi-supervised learning. Still, the combined model suffers from a cold-start problem. To further combat this issue, we propose an improved weight initialisation solution, leading to a novel two-stage training scheme we call knowledge-reinforced-learning (KRL). Our empirical evaluations suggest that the combined model yields competitive performance against the state-of-the-art supervised baselines on complete data. Furthermore, in scenarios where only a fraction of the labelled pairs are available, our combined model consistently outperforms the strong supervised model baseline (DDL) by a significant margin (p
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2666-6510
Relation: http://www.sciencedirect.com/science/article/pii/S2666651023000025; https://doaj.org/toc/2666-6510
DOI: 10.1016/j.aiopen.2023.05.001
URL الوصول: https://doaj.org/article/7405011d2af64562ae5861bfc0674a5f
رقم الانضمام: edsdoj.7405011d2af64562ae5861bfc0674a5f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26666510
DOI:10.1016/j.aiopen.2023.05.001