Academic Journal

Single image defocus blur segmentation using Local Ternary Pattern

التفاصيل البيبلوغرافية
العنوان: Single image defocus blur segmentation using Local Ternary Pattern
المؤلفون: Muhammad Tariq Mahmood, Usman Ali, Young Kyu Choi
المصدر: ICT Express, Vol 6, Iss 2, Pp 113-116 (2020)
بيانات النشر: Elsevier, 2020.
سنة النشر: 2020
المجموعة: LCC:Information technology
مصطلحات موضوعية: Blur measure, Blur segmentation, Local Ternary Patterns (LTP), Information technology, T58.5-58.64
الوصف: This work presents an efficient LTP-based sharpness measure for blur detection and segmentation. The proposed method transforms each pixel into ternary codes depending on the differences of intensity of the central pixel with the neighborhood pixels. These ternary codes have been converted into lower and upper binary patterns. Among these, the non-uniform patterns have been exploited to compute the blur measure and blur segmentation. The proposed methodology performs segmentation without having any explicit information about the type and level of the blur. Experimental results reveal that the proposed method outperforms the state-of-the-art blur detection and segmentation methods.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2405-9595
Relation: http://www.sciencedirect.com/science/article/pii/S2405959519302279; https://doaj.org/toc/2405-9595
DOI: 10.1016/j.icte.2019.10.003
URL الوصول: https://doaj.org/article/734f6e9cc3294da4954833b562150730
رقم الانضمام: edsdoj.734f6e9cc3294da4954833b562150730
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:24059595
DOI:10.1016/j.icte.2019.10.003