التفاصيل البيبلوغرافية
العنوان: |
Single image defocus blur segmentation using Local Ternary Pattern |
المؤلفون: |
Muhammad Tariq Mahmood, Usman Ali, Young Kyu Choi |
المصدر: |
ICT Express, Vol 6, Iss 2, Pp 113-116 (2020) |
بيانات النشر: |
Elsevier, 2020. |
سنة النشر: |
2020 |
المجموعة: |
LCC:Information technology |
مصطلحات موضوعية: |
Blur measure, Blur segmentation, Local Ternary Patterns (LTP), Information technology, T58.5-58.64 |
الوصف: |
This work presents an efficient LTP-based sharpness measure for blur detection and segmentation. The proposed method transforms each pixel into ternary codes depending on the differences of intensity of the central pixel with the neighborhood pixels. These ternary codes have been converted into lower and upper binary patterns. Among these, the non-uniform patterns have been exploited to compute the blur measure and blur segmentation. The proposed methodology performs segmentation without having any explicit information about the type and level of the blur. Experimental results reveal that the proposed method outperforms the state-of-the-art blur detection and segmentation methods. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2405-9595 |
Relation: |
http://www.sciencedirect.com/science/article/pii/S2405959519302279; https://doaj.org/toc/2405-9595 |
DOI: |
10.1016/j.icte.2019.10.003 |
URL الوصول: |
https://doaj.org/article/734f6e9cc3294da4954833b562150730 |
رقم الانضمام: |
edsdoj.734f6e9cc3294da4954833b562150730 |
قاعدة البيانات: |
Directory of Open Access Journals |