Academic Journal

Real-time anomaly detection for very short-term load forecasting

التفاصيل البيبلوغرافية
العنوان: Real-time anomaly detection for very short-term load forecasting
المؤلفون: Jian LUO, Tao HONG, Meng YUE
المصدر: Journal of Modern Power Systems and Clean Energy, Vol 6, Iss 2, Pp 235-243 (2018)
بيانات النشر: IEEE, 2018.
سنة النشر: 2018
المجموعة: LCC:Production of electric energy or power. Powerplants. Central stations
LCC:Renewable energy sources
مصطلحات موضوعية: Real-time anomaly detection, Very short-term load forecasting, Multiple linear regression, Data cleansing, Production of electric energy or power. Powerplants. Central stations, TK1001-1841, Renewable energy sources, TJ807-830
الوصف: Abstract Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonly used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Finally, a general anomaly detection framework is proposed for the future research.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2196-5625
2196-5420
Relation: http://link.springer.com/article/10.1007/s40565-017-0351-7; https://doaj.org/toc/2196-5625; https://doaj.org/toc/2196-5420
DOI: 10.1007/s40565-017-0351-7
URL الوصول: https://doaj.org/article/ee72f89010d04c75b2cb9c10070c788d
رقم الانضمام: edsdoj.72f89010d04c75b2cb9c10070c788d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21965625
21965420
DOI:10.1007/s40565-017-0351-7