التفاصيل البيبلوغرافية
العنوان: |
Limit cycles of septic polynomial differential systems bifurcating from the periodic annulus of cubic center |
المؤلفون: |
Imane Zemmouri, Amor Menaceur, Abdelhamid Laouar, Salah Boulaaras |
المصدر: |
Partial Differential Equations in Applied Mathematics, Vol 9, Iss , Pp 100622- (2024) |
بيانات النشر: |
Elsevier, 2024. |
سنة النشر: |
2024 |
المجموعة: |
LCC:Applied mathematics. Quantitative methods |
مصطلحات موضوعية: |
Differential equations, Mathematical operators, Limit cycle, Averaging method, Periodic orbit, Septic polynomial differential system, Applied mathematics. Quantitative methods, T57-57.97 |
الوصف: |
This paper focuses on investigating the maximum number of limit cycles bifurcating from the periodic orbits adapted to the cubic system given by ẋ=y−yx+a2,ẏ=−x+xx+a2,where a is a positive number with a≠1. The study specifically examines the perturbation of this system within the class of all septic polynomial differential systems. Our main result demonstrates that the first-order averaging theory associated with the perturbed system yields a maximum of twenty-two limit cycles. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2666-8181 |
Relation: |
http://www.sciencedirect.com/science/article/pii/S2666818124000081; https://doaj.org/toc/2666-8181 |
DOI: |
10.1016/j.padiff.2024.100622 |
URL الوصول: |
https://doaj.org/article/6f24f09d90354e1695c4c95f8d9b1e6c |
رقم الانضمام: |
edsdoj.6f24f09d90354e1695c4c95f8d9b1e6c |
قاعدة البيانات: |
Directory of Open Access Journals |