Academic Journal

Limit cycles of septic polynomial differential systems bifurcating from the periodic annulus of cubic center

التفاصيل البيبلوغرافية
العنوان: Limit cycles of septic polynomial differential systems bifurcating from the periodic annulus of cubic center
المؤلفون: Imane Zemmouri, Amor Menaceur, Abdelhamid Laouar, Salah Boulaaras
المصدر: Partial Differential Equations in Applied Mathematics, Vol 9, Iss , Pp 100622- (2024)
بيانات النشر: Elsevier, 2024.
سنة النشر: 2024
المجموعة: LCC:Applied mathematics. Quantitative methods
مصطلحات موضوعية: Differential equations, Mathematical operators, Limit cycle, Averaging method, Periodic orbit, Septic polynomial differential system, Applied mathematics. Quantitative methods, T57-57.97
الوصف: This paper focuses on investigating the maximum number of limit cycles bifurcating from the periodic orbits adapted to the cubic system given by ẋ=y−yx+a2,ẏ=−x+xx+a2,where a is a positive number with a≠1. The study specifically examines the perturbation of this system within the class of all septic polynomial differential systems. Our main result demonstrates that the first-order averaging theory associated with the perturbed system yields a maximum of twenty-two limit cycles.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2666-8181
Relation: http://www.sciencedirect.com/science/article/pii/S2666818124000081; https://doaj.org/toc/2666-8181
DOI: 10.1016/j.padiff.2024.100622
URL الوصول: https://doaj.org/article/6f24f09d90354e1695c4c95f8d9b1e6c
رقم الانضمام: edsdoj.6f24f09d90354e1695c4c95f8d9b1e6c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26668181
DOI:10.1016/j.padiff.2024.100622