Academic Journal

GNN-EADD: Graph Neural Network-Based E-Commerce Anomaly Detection via Dual-Stage Learning

التفاصيل البيبلوغرافية
العنوان: GNN-EADD: Graph Neural Network-Based E-Commerce Anomaly Detection via Dual-Stage Learning
المؤلفون: Zhouhang Shao, Xuran Wang, Enkai Ji, Shiyang Chen, Jin Wang
المصدر: IEEE Access, Vol 13, Pp 8963-8976 (2025)
بيانات النشر: IEEE, 2025.
سنة النشر: 2025
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Graph neural networks, e-commerce, anomaly detection, heterogeneous graphs, graph attention networks, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: E-commerce platforms face significant challenges in detecting anomalous products, including counterfeit goods and fraudulent listings, which can undermine user trust and platform integrity. This paper presents Graph Neural Network-based E-commerce Anomaly Detection via Dual-stage Learning (GNN-EADD), a novel approach leveraging graph neural networks for anomaly detection in large-scale e-commerce ecosystems. Our key contributions include: 1) A heterogeneous graph representation incorporating products, sellers, and buyers as nodes with their relationships as edges; 2) A novel dual-stage learning framework combining unsupervised graph embedding with semi-supervised fine-tuning; and 3) An attention mechanism that effectively captures complex patterns within network structures. Extensive experiments on a large-scale Amazon dataset demonstrate that GNN-EADD significantly outperforms state-of-the-art baselines in terms of anomaly detection accuracy, precision, and recall, while showing robustness to various types of anomalies and scalability to large networks.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/10829566/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2025.3526239
URL الوصول: https://doaj.org/article/6e308860ae2a445b9b24584d018ecf83
رقم الانضمام: edsdoj.6e308860ae2a445b9b24584d018ecf83
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2025.3526239