Academic Journal

AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning

التفاصيل البيبلوغرافية
العنوان: AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning
المؤلفون: In-Hui Hwang, Mikhail A. Solovyev, Sang-Wook Han, Maria K. Y. Chan, John P. Hammonds, Steve M. Heald, Shelly D. Kelly, Nicholas Schwarz, Xiaoyi Zhang, Cheng-Jun Sun
المصدر: Journal of Synchrotron Radiation, Vol 29, Iss 5, Pp 1309-1317 (2022)
بيانات النشر: International Union of Crystallography, 2022.
سنة النشر: 2022
المجموعة: LCC:Nuclear and particle physics. Atomic energy. Radioactivity
LCC:Crystallography
مصطلحات موضوعية: axeap, xes, unsupervised machine learning, user-friendly interface, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Crystallography, QD901-999
الوصف: The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1600-5775
16005775
Relation: http://scripts.iucr.org/cgi-bin/paper?S1600577522006786; https://doaj.org/toc/1600-5775
DOI: 10.1107/S1600577522006786
URL الوصول: https://doaj.org/article/6d67bb1b65cc4793aab931af1f673042
رقم الانضمام: edsdoj.6d67bb1b65cc4793aab931af1f673042
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16005775
DOI:10.1107/S1600577522006786