Academic Journal

EEG-Based User Identification using Machine Learning and Deep Learning Approaches

التفاصيل البيبلوغرافية
العنوان: EEG-Based User Identification using Machine Learning and Deep Learning Approaches
المؤلفون: Sushma S., Venkat S., Mohanavelu K., Fredo Jac A. R., Bobby T. Christy
المصدر: Current Directions in Biomedical Engineering, Vol 10, Iss 4, Pp 639-644 (2024)
بيانات النشر: De Gruyter, 2024.
سنة النشر: 2024
المجموعة: LCC:Medicine
مصطلحات موضوعية: electroencephalogram, machine learning, deep learning, user-identification, Medicine
الوصف: In recent years, Electroencephalogram (EEG) based user authentication systems have gained significant interest as an innovative approach for identity verification. EEGs are considered to be a novel biometric attribute due to the individuality of each person’s cerebral activity patterns. This work explores the feasibility and efficiency of utilizing EEG signals, generated in response to emotional stimuli, for user authentication applications, by implementing Machine Learning (ML) and Deep Learning (DL) approaches. Support Vector Machine (SVM), Random Forest (RF) classifier and 1D Convolution Neural Network (CNN) were employed to evaluate and compare the performance of EEG-based user authentication for two publicly available EEG datasets, namely DEAP and DENS database. The performance of EEGbased user authentication was significantly high in LAHV emotional state for DENS dataset, achieving an accuracy of 99.2 % and 92.59 % with SVM and modified 1D CNN, respectively.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2364-5504
Relation: https://doaj.org/toc/2364-5504
DOI: 10.1515/cdbme-2024-2157
URL الوصول: https://doaj.org/article/6d2850904ccc42b4921e6a6eecf3618f
رقم الانضمام: edsdoj.6d2850904ccc42b4921e6a6eecf3618f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:23645504
DOI:10.1515/cdbme-2024-2157