Academic Journal

Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains

التفاصيل البيبلوغرافية
العنوان: Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
المؤلفون: Zhang Junqiang, Yang Dachun, Yang Sibei
المصدر: Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 535-579 (2021)
بيانات النشر: De Gruyter, 2021.
سنة النشر: 2021
المجموعة: LCC:Analysis
مصطلحات موضوعية: reifenberg flat domain, degenerate elliptic equation, muckenhoupt weight, variable lebesgue space, bmo, primary 35j70, secondary 35b65, 46e35, 42b35, 42b37, Analysis, QA299.6-433
الوصف: Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition. In this article, the authors investigate the weighted W1, p (·)(Ω, w)-regularity of the weak solutions of second order degenerate elliptic equations in divergence form with Dirichlet boundary condition, under the assumption that the degenerate coefficients belong to weighted BMO spaces with small norms.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2191-9496
2191-950X
Relation: https://doaj.org/toc/2191-9496; https://doaj.org/toc/2191-950X
DOI: 10.1515/anona-2021-0206
URL الوصول: https://doaj.org/article/6a440974c9924781a21e14cd312b303d
رقم الانضمام: edsdoj.6a440974c9924781a21e14cd312b303d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21919496
2191950X
DOI:10.1515/anona-2021-0206