التفاصيل البيبلوغرافية
العنوان: |
3DSliceLeNet: Recognizing 3D Objects Using a Slice-Representation |
المؤلفون: |
Francisco Gomez-Donoso, Felix Escalona, Sergio Orts-Escolano, Alberto Garcia-Garcia, Jose Garcia-Rodriguez, Miguel Cazorla |
المصدر: |
IEEE Access, Vol 10, Pp 15378-15392 (2022) |
بيانات النشر: |
IEEE, 2022. |
سنة النشر: |
2022 |
المجموعة: |
LCC:Electrical engineering. Electronics. Nuclear engineering |
مصطلحات موضوعية: |
Deep learning, 3D object recognition, convolutional neural networks, Caffe, Electrical engineering. Electronics. Nuclear engineering, TK1-9971 |
الوصف: |
Convolutional Neural Networks (CNNs) have become the default paradigm for addressing classification problems, especially, but not only, in image recognition. This is mainly due to their high success rate. Although a number of approaches currently apply deep learning to the 3D shape recognition problem, they are either too slow for online use or too error-prone. To fill this gap, we propose 3DSliceLeNet, a deep learning architecture for point cloud classification. Our proposal converts the input point clouds into a two-dimensional representation by performing a slicing process and projecting the points to the principal planes, thus generating images that are used by the convolutional architecture. 3DSliceLeNet successfully achieves both high accuracy and low computational cost. A dense set of experiments has been conducted to validate our system under the ModelNet challenge, a large-scale 3D Computer Aided Design (CAD) model dataset. Our proposal achieves a success rate of 94.37% and an Area under Curve (AUC) of 0.978 on the ModelNet-10 classification task. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2169-3536 |
Relation: |
https://ieeexplore.ieee.org/document/9701312/; https://doaj.org/toc/2169-3536 |
DOI: |
10.1109/ACCESS.2022.3148387 |
URL الوصول: |
https://doaj.org/article/67f6038836ba414a9a35ba1271b03986 |
رقم الانضمام: |
edsdoj.67f6038836ba414a9a35ba1271b03986 |
قاعدة البيانات: |
Directory of Open Access Journals |