Academic Journal
Computational models predicting the early development of the COVID-19 pandemic in Sweden: systematic review, data synthesis, and secondary validation of accuracy
العنوان: | Computational models predicting the early development of the COVID-19 pandemic in Sweden: systematic review, data synthesis, and secondary validation of accuracy |
---|---|
المؤلفون: | Philip Gerlee, Anna Jöud, Armin Spreco, Toomas Timpka |
المصدر: | Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022) |
بيانات النشر: | Nature Portfolio, 2022. |
سنة النشر: | 2022 |
المجموعة: | LCC:Medicine LCC:Science |
مصطلحات موضوعية: | Medicine, Science |
الوصف: | Abstract Computational models for predicting the early course of the COVID-19 pandemic played a central role in policy-making at regional and national levels. We performed a systematic review, data synthesis, and secondary validation of studies that reported on prediction models addressing the early stages of the COVID-19 pandemic in Sweden. A literature search in January 2021 based on the search triangle model identified 1672 peer-reviewed articles, preprints and reports. After applying inclusion criteria 52 studies remained out of which 12 passed a Risk of Bias Opinion Tool. When comparing model predictions with actual outcomes only 4 studies exhibited an acceptable forecast (mean absolute percentage error, MAPE |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 2045-2322 |
Relation: | https://doaj.org/toc/2045-2322 |
DOI: | 10.1038/s41598-022-16159-6 |
URL الوصول: | https://doaj.org/article/67cbc3904a0047309665142d56b203e8 |
رقم الانضمام: | edsdoj.67cbc3904a0047309665142d56b203e8 |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 20452322 |
---|---|
DOI: | 10.1038/s41598-022-16159-6 |