Academic Journal

Computational models predicting the early development of the COVID-19 pandemic in Sweden: systematic review, data synthesis, and secondary validation of accuracy

التفاصيل البيبلوغرافية
العنوان: Computational models predicting the early development of the COVID-19 pandemic in Sweden: systematic review, data synthesis, and secondary validation of accuracy
المؤلفون: Philip Gerlee, Anna Jöud, Armin Spreco, Toomas Timpka
المصدر: Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
بيانات النشر: Nature Portfolio, 2022.
سنة النشر: 2022
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Abstract Computational models for predicting the early course of the COVID-19 pandemic played a central role in policy-making at regional and national levels. We performed a systematic review, data synthesis, and secondary validation of studies that reported on prediction models addressing the early stages of the COVID-19 pandemic in Sweden. A literature search in January 2021 based on the search triangle model identified 1672 peer-reviewed articles, preprints and reports. After applying inclusion criteria 52 studies remained out of which 12 passed a Risk of Bias Opinion Tool. When comparing model predictions with actual outcomes only 4 studies exhibited an acceptable forecast (mean absolute percentage error, MAPE
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-022-16159-6
URL الوصول: https://doaj.org/article/67cbc3904a0047309665142d56b203e8
رقم الانضمام: edsdoj.67cbc3904a0047309665142d56b203e8
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
DOI:10.1038/s41598-022-16159-6