Academic Journal
Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials
العنوان: | Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials |
---|---|
المؤلفون: | Pankaj Rajak, Beibei Wang, Ken-ichi Nomura, Ye Luo, Aiichiro Nakano, Rajiv Kalia, Priya Vashishta |
المصدر: | npj Computational Materials, Vol 7, Iss 1, Pp 1-8 (2021) |
بيانات النشر: | Nature Portfolio, 2021. |
سنة النشر: | 2021 |
المجموعة: | LCC:Materials of engineering and construction. Mechanics of materials LCC:Computer software |
مصطلحات موضوعية: | Materials of engineering and construction. Mechanics of materials, TA401-492, Computer software, QA76.75-76.765 |
الوصف: | Abstract Mechanical behavior of 2D materials such as MoS2 can be tuned by the ancient art of kirigami. Experiments and atomistic simulations show that 2D materials can be stretched more than 50% by strategic insertion of cuts. However, designing kirigami structures with desired mechanical properties is highly sensitive to the pattern and location of kirigami cuts. We use reinforcement learning (RL) to generate a wide range of highly stretchable MoS2 kirigami structures. The RL agent is trained by a small fraction (1.45%) of molecular dynamics simulation data, randomly sampled from a search space of over 4 million candidates for MoS2 kirigami structures with 6 cuts. After training, the RL agent not only proposes 6-cut kirigami structures that have stretchability above 45%, but also gains mechanistic insight to propose highly stretchable (above 40%) kirigami structures consisting of 8 and 10 cuts from a search space of billion candidates as zero-shot predictions. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 2057-3960 |
Relation: | https://doaj.org/toc/2057-3960 |
DOI: | 10.1038/s41524-021-00572-y |
URL الوصول: | https://doaj.org/article/677801e86c9c4479ada8ce35b66038ce |
رقم الانضمام: | edsdoj.677801e86c9c4479ada8ce35b66038ce |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 20573960 |
---|---|
DOI: | 10.1038/s41524-021-00572-y |