Academic Journal

IoT-based 3D pose estimation and motion optimization for athletes: Application of C3D and OpenPose

التفاصيل البيبلوغرافية
العنوان: IoT-based 3D pose estimation and motion optimization for athletes: Application of C3D and OpenPose
المؤلفون: Fei Ren, Chao Ren, Tianyi Lyu
المصدر: Alexandria Engineering Journal, Vol 115, Iss , Pp 210-221 (2025)
بيانات النشر: Elsevier, 2025.
سنة النشر: 2025
المجموعة: LCC:Engineering (General). Civil engineering (General)
مصطلحات موضوعية: Human pose estimation, IoT sensors, Motion capture, Multi-view pose estimation, Deep learning, Athlete action, Engineering (General). Civil engineering (General), TA1-2040
الوصف: This study proposes the IoT-Enhanced Pose Optimization Network (IE-PONet) for high-precision 3D pose estimation and motion optimization of track and field athletes. IE-PONet integrates C3D for spatiotemporal feature extraction, OpenPose for real-time keypoint detection, and Bayesian optimization for hyperparameter tuning. Experimental results on NTURGB+D and FineGYM datasets demonstrate superior performance, with APp50 scores of 90.5 and 91.0, and mAP scores of 74.3 and 74.0, respectively. Ablation studies confirm the essential roles of each module in enhancing model accuracy. IE-PONet provides a robust tool for athletic performance analysis and optimization, offering precise technical insights for training and injury prevention. Future work will focus on further model optimization, multimodal data integration, and developing real-time feedback mechanisms to enhance practical applications.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1110-0168
Relation: http://www.sciencedirect.com/science/article/pii/S1110016824012444; https://doaj.org/toc/1110-0168
DOI: 10.1016/j.aej.2024.10.079
URL الوصول: https://doaj.org/article/64a1d6296a3343428ce4fbd512af285b
رقم الانضمام: edsdoj.64a1d6296a3343428ce4fbd512af285b
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:11100168
DOI:10.1016/j.aej.2024.10.079