Academic Journal

Virtual histological staining of unlabeled autopsy tissue

التفاصيل البيبلوغرافية
العنوان: Virtual histological staining of unlabeled autopsy tissue
المؤلفون: Yuzhu Li, Nir Pillar, Jingxi Li, Tairan Liu, Di Wu, Songyu Sun, Guangdong Ma, Kevin de Haan, Luzhe Huang, Yijie Zhang, Sepehr Hamidi, Anatoly Urisman, Tal Keidar Haran, William Dean Wallace, Jonathan E. Zuckerman, Aydogan Ozcan
المصدر: Nature Communications, Vol 15, Iss 1, Pp 1-17 (2024)
بيانات النشر: Nature Portfolio, 2024.
سنة النشر: 2024
المجموعة: LCC:Science
مصطلحات موضوعية: Science
الوصف: Abstract Traditional histochemical staining of post-mortem samples often confronts inferior staining quality due to autolysis caused by delayed fixation of cadaver tissue, and such chemical staining procedures covering large tissue areas demand substantial labor, cost and time. Here, we demonstrate virtual staining of autopsy tissue using a trained neural network to rapidly transform autofluorescence images of label-free autopsy tissue sections into brightfield equivalent images, matching hematoxylin and eosin (H&E) stained versions of the same samples. The trained model can effectively accentuate nuclear, cytoplasmic and extracellular features in new autopsy tissue samples that experienced severe autolysis, such as COVID-19 samples never seen before, where the traditional histochemical staining fails to provide consistent staining quality. This virtual autopsy staining technique provides a rapid and resource-efficient solution to generate artifact-free H&E stains despite severe autolysis and cell death, also reducing labor, cost and infrastructure requirements associated with the standard histochemical staining.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2041-1723
Relation: https://doaj.org/toc/2041-1723
DOI: 10.1038/s41467-024-46077-2
URL الوصول: https://doaj.org/article/e629233208ca4c589824c397bea9a0fb
رقم الانضمام: edsdoj.629233208ca4c589824c397bea9a0fb
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20411723
DOI:10.1038/s41467-024-46077-2