Academic Journal

Qualify-as-you-go: sensor fusion of optical and acoustic signatures with contrastive deep learning for multi-material composition monitoring in laser powder bed fusion process

التفاصيل البيبلوغرافية
العنوان: Qualify-as-you-go: sensor fusion of optical and acoustic signatures with contrastive deep learning for multi-material composition monitoring in laser powder bed fusion process
المؤلفون: Vigneashwara Pandiyan, Antonios Baganis, Roland Axel Richter, Rafał Wróbel, Christian Leinenbach
المصدر: Virtual and Physical Prototyping, Vol 19, Iss 1 (2024)
بيانات النشر: Taylor & Francis Group, 2024.
سنة النشر: 2024
المجموعة: LCC:Science
LCC:Manufactures
مصطلحات موضوعية: Laser powder bed fusion, multi-material process monitoring, acoustic emission, optical emission, contrastive learning, Science, Manufactures, TS1-2301
الوصف: ABSTRACTGrowing demand for multi-material Laser Powder Bed Fusion (LPBF) faces process control and quality monitoring challenges, particularly in ensuring precise material composition. This study explores optical and acoustic emission signals during LPBF processes with multiple materials, addressing challenges in process control and ensuring accurate material composition. Experimental data from processing five powder compositions were collected using a custom-built monitoring system in a commercial LPBF machine. The research categorised signals from LPBF processing various compositions, enhancing prediction accuracy by combining optical with acoustic data and training convolutional neural networks using contrastive learning. Latent spaces of trained models using two contrastive loss functions, clustered acoustic and optical emissions based on similarities, aligning with five compositions. Contrastive learning and sensor fusion were found to be essential for monitoring LPBF processes involving multiple materials. This research advances the understanding of multi-material LPBF, highlighting sensor fusion strategies’ potential for improving quality control in additive manufacturing.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 17452759
1745-2767
1745-2759
Relation: https://doaj.org/toc/1745-2759; https://doaj.org/toc/1745-2767
DOI: 10.1080/17452759.2024.2356080
URL الوصول: https://doaj.org/article/610abd788992460895b96b0a354132ca
رقم الانضمام: edsdoj.610abd788992460895b96b0a354132ca
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:17452759
17452767
DOI:10.1080/17452759.2024.2356080