Academic Journal

Predicting Overall Survival with Deep Learning from 18F-FDG PET-CT Images in Patients with Hepatocellular Carcinoma before Liver Transplantation

التفاصيل البيبلوغرافية
العنوان: Predicting Overall Survival with Deep Learning from 18F-FDG PET-CT Images in Patients with Hepatocellular Carcinoma before Liver Transplantation
المؤلفون: Yung-Chi Lai, Kuo-Chen Wu, Chao-Jen Chang, Yi-Jin Chen, Kuan-Pin Wang, Long-Bin Jeng, Chia-Hung Kao
المصدر: Diagnostics, Vol 13, Iss 5, p 981 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Medicine (General)
مصطلحات موضوعية: 18F-fluorodeoxyglucose (18F-FDG), positron emission tomography and computed tomography (PET-CT), hepatocellular carcinoma (HCC), liver transplantation (LT), deep learning, Medicine (General), R5-920
الوصف: Positron emission tomography and computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET-CT) were used to predict outcomes after liver transplantation in patients with hepatocellular carcinoma (HCC). However, few approaches for prediction based on 18F-FDG PET-CT images that leverage automatic liver segmentation and deep learning were proposed. This study evaluated the performance of deep learning from 18F-FDG PET-CT images to predict overall survival in HCC patients before liver transplantation (LT). We retrospectively included 304 patients with HCC who underwent 18F-FDG PET/CT before LT between January 2010 and December 2016. The hepatic areas of 273 of the patients were segmented by software, while the other 31 were delineated manually. We analyzed the predictive value of the deep learning model from both FDG PET/CT images and CT images alone. The results of the developed prognostic model were obtained by combining FDG PET-CT images and combining FDG CT images (0.807 AUC vs. 0.743 AUC). The model based on FDG PET-CT images achieved somewhat better sensitivity than the model based on CT images alone (0.571 SEN vs. 0.432 SEN). Automatic liver segmentation from 18F-FDG PET-CT images is feasible and can be utilized to train deep-learning models. The proposed predictive tool can effectively determine prognosis (i.e., overall survival) and, thereby, select an optimal candidate of LT for patients with HCC.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2075-4418
Relation: https://www.mdpi.com/2075-4418/13/5/981; https://doaj.org/toc/2075-4418
DOI: 10.3390/diagnostics13050981
URL الوصول: https://doaj.org/article/5ffed6f7428b4b7d862a896c7da107a9
رقم الانضمام: edsdoj.5ffed6f7428b4b7d862a896c7da107a9
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20754418
DOI:10.3390/diagnostics13050981