Academic Journal

Evaluation of Fifteen Algorithms for the Resolution of the Electrocardiography Imaging Inverse Problem Using ex-vivo and in-silico Data

التفاصيل البيبلوغرافية
العنوان: Evaluation of Fifteen Algorithms for the Resolution of the Electrocardiography Imaging Inverse Problem Using ex-vivo and in-silico Data
المؤلفون: Amel Karoui, Laura Bear, Pauline Migerditichan, Nejib Zemzemi
المصدر: Frontiers in Physiology, Vol 9 (2018)
بيانات النشر: Frontiers Media S.A., 2018.
سنة النشر: 2018
المجموعة: LCC:Physiology
مصطلحات موضوعية: inverse problem, Tikhonov regularization, L1-norm regularization, regularization parameter, method of fundamental solutions, finite element method, Physiology, QP1-981
الوصف: The electrocardiographic imaging inverse problem is ill-posed. Regularization has to be applied to stabilize the problem and solve for a realistic solution. Here, we assess different regularization methods for solving the inverse problem. In this study, we assess (i) zero order Tikhonov regularization (ZOT) in conjunction with the Method of Fundamental Solutions (MFS), (ii) ZOT regularization using the Finite Element Method (FEM), and (iii) the L1-Norm regularization of the current density on the heart surface combined with FEM. Moreover, we apply different approaches for computing the optimal regularization parameter, all based on the Generalized Singular Value Decomposition (GSVD). These methods include Generalized Cross Validation (GCV), Robust Generalized Cross Validation (RGCV), ADPC, U-Curve and Composite REsidual and Smoothing Operator (CRESO) methods. Both simulated and experimental data are used for this evaluation. Results show that the RGCV approach provides the best results to determine the optimal regularization parameter using both the FEM-ZOT and the FEM-L1-Norm. However for the MFS-ZOT, the GCV outperformed all the other regularization parameter choice methods in terms of relative error and correlation coefficient. Regarding the epicardial potential reconstruction, FEM-L1-Norm clearly outperforms the other methods using the simulated data but, using the experimental data, FEM based methods perform as well as MFS. Finally, the use of FEM-L1-Norm combined with RGCV provides robust results in the pacing site localization.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1664-042X
Relation: https://www.frontiersin.org/article/10.3389/fphys.2018.01708/full; https://doaj.org/toc/1664-042X
DOI: 10.3389/fphys.2018.01708
URL الوصول: https://doaj.org/article/c5ec9885648e4ccfa2d62332087060a7
رقم الانضمام: edsdoj.5ec9885648e4ccfa2d62332087060a7
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:1664042X
DOI:10.3389/fphys.2018.01708