Academic Journal
Multi-task learning for predicting SARS-CoV-2 antibody escape
العنوان: | Multi-task learning for predicting SARS-CoV-2 antibody escape |
---|---|
المؤلفون: | Barak Gross, Roded Sharan |
المصدر: | Frontiers in Genetics, Vol 13 (2022) |
بيانات النشر: | Frontiers Media S.A., 2022. |
سنة النشر: | 2022 |
المجموعة: | LCC:Genetics |
مصطلحات موضوعية: | multi-task learning, neural network, escape prediction, coronavirus, receptor binding domain, Genetics, QH426-470 |
الوصف: | The coronavirus pandemic has revolutionized our world, with vaccination proving to be a key tool in fighting the disease. However, a major threat to this line of attack are variants that can evade the vaccine. Thus, a fundamental problem of growing importance is the identification of mutations of concern with high escape probability. In this paper we develop a computational framework that harnesses systematic mutation screens in the receptor binding domain of the viral Spike protein for escape prediction. The framework analyzes data on escape from multiple antibodies simultaneously, creating a latent representation of mutations that is shown to be effective in predicting escape and binding properties of the virus. We use this representation to validate the escape potential of current SARS-CoV-2 variants. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 1664-8021 |
Relation: | https://www.frontiersin.org/articles/10.3389/fgene.2022.886649/full; https://doaj.org/toc/1664-8021 |
DOI: | 10.3389/fgene.2022.886649 |
URL الوصول: | https://doaj.org/article/5a18e1ec506846c9b0fc0020fbf82356 |
رقم الانضمام: | edsdoj.5a18e1ec506846c9b0fc0020fbf82356 |
قاعدة البيانات: | Directory of Open Access Journals |
ResultId |
1 |
---|---|
Header |
edsdoj Directory of Open Access Journals edsdoj.5a18e1ec506846c9b0fc0020fbf82356 947 3 Academic Journal academicJournal 947.14111328125 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.5a18e1ec506846c9b0fc0020fbf82356&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => https://doaj.org/article/5a18e1ec506846c9b0fc0020fbf82356 [Name] => EDS - DOAJ [Category] => fullText [Text] => View record in DOAJ [MouseOverText] => View record in DOAJ ) [1] => Array ( [Url] => https://resolver.ebscohost.com/openurl?custid=s6537998&groupid=main&authtype=ip,guest&sid=EBSCO:edsdoj&genre=article&issn=16648021&ISBN=&volume=13&issue=&date=20220801&spage=&pages=&title=Frontiers in Genetics&atitle=Multi-task%20learning%20for%20predicting%20SARS-CoV-2%20antibody%20escape&id=DOI:10.3389/fgene.2022.886649 [Name] => Full Text Finder (s6537998api) [Category] => fullText [Text] => Full Text Finder [Icon] => https://imageserver.ebscohost.com/branding/images/FTF.gif [MouseOverText] => Full Text Finder ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => Multi-task learning for predicting SARS-CoV-2 antibody escape
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Barak+Gross%22">Barak Gross</searchLink><br /><searchLink fieldCode="AR" term="%22Roded+Sharan%22">Roded Sharan</searchLink> ) Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Frontiers in Genetics, Vol 13 (2022) ) Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Frontiers Media S.A., 2022. ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2022 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => LCC:Genetics ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22multi-task+learning%22">multi-task learning</searchLink><br /><searchLink fieldCode="DE" term="%22neural+network%22">neural network</searchLink><br /><searchLink fieldCode="DE" term="%22escape+prediction%22">escape prediction</searchLink><br /><searchLink fieldCode="DE" term="%22coronavirus%22">coronavirus</searchLink><br /><searchLink fieldCode="DE" term="%22receptor+binding+domain%22">receptor binding domain</searchLink><br /><searchLink fieldCode="DE" term="%22Genetics%22">Genetics</searchLink><br /><searchLink fieldCode="DE" term="%22QH426-470%22">QH426-470</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => The coronavirus pandemic has revolutionized our world, with vaccination proving to be a key tool in fighting the disease. However, a major threat to this line of attack are variants that can evade the vaccine. Thus, a fundamental problem of growing importance is the identification of mutations of concern with high escape probability. In this paper we develop a computational framework that harnesses systematic mutation screens in the receptor binding domain of the viral Spike protein for escape prediction. The framework analyzes data on escape from multiple antibodies simultaneously, creating a latent representation of mutations that is shown to be effective in predicting escape and binding properties of the virus. We use this representation to validate the escape potential of current SARS-CoV-2 variants. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => article ) Array ( [Name] => Format [Label] => File Description [Group] => SrcInfo [Data] => electronic resource ) Array ( [Name] => Language [Label] => Language [Group] => Lang [Data] => English ) Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 1664-8021 ) Array ( [Name] => NoteTitleSource [Label] => Relation [Group] => SrcInfo [Data] => https://www.frontiersin.org/articles/10.3389/fgene.2022.886649/full; https://doaj.org/toc/1664-8021 ) Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.3389/fgene.2022.886649 ) Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://doaj.org/article/5a18e1ec506846c9b0fc0020fbf82356" linkWindow="_blank">https://doaj.org/article/5a18e1ec506846c9b0fc0020fbf82356</link> ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsdoj.5a18e1ec506846c9b0fc0020fbf82356 ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Identifiers] => Array
(
[0] => Array
(
[Type] => doi
[Value] => 10.3389/fgene.2022.886649
)
)
[Languages] => Array
(
[0] => Array
(
[Text] => English
)
)
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => multi-task learning
[Type] => general
)
[1] => Array
(
[SubjectFull] => neural network
[Type] => general
)
[2] => Array
(
[SubjectFull] => escape prediction
[Type] => general
)
[3] => Array
(
[SubjectFull] => coronavirus
[Type] => general
)
[4] => Array
(
[SubjectFull] => receptor binding domain
[Type] => general
)
[5] => Array
(
[SubjectFull] => Genetics
[Type] => general
)
[6] => Array
(
[SubjectFull] => QH426-470
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Multi-task learning for predicting SARS-CoV-2 antibody escape
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Barak Gross
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Roded Sharan
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 01
[M] => 08
[Type] => published
[Y] => 2022
)
)
[Identifiers] => Array
(
[0] => Array
(
[Type] => issn-print
[Value] => 16648021
)
)
[Numbering] => Array
(
[0] => Array
(
[Type] => volume
[Value] => 13
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Frontiers in Genetics
[Type] => main
)
)
)
)
)
)
)
|
IllustrationInfo |