Academic Journal

Multi-task learning for predicting SARS-CoV-2 antibody escape

التفاصيل البيبلوغرافية
العنوان: Multi-task learning for predicting SARS-CoV-2 antibody escape
المؤلفون: Barak Gross, Roded Sharan
المصدر: Frontiers in Genetics, Vol 13 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Genetics
مصطلحات موضوعية: multi-task learning, neural network, escape prediction, coronavirus, receptor binding domain, Genetics, QH426-470
الوصف: The coronavirus pandemic has revolutionized our world, with vaccination proving to be a key tool in fighting the disease. However, a major threat to this line of attack are variants that can evade the vaccine. Thus, a fundamental problem of growing importance is the identification of mutations of concern with high escape probability. In this paper we develop a computational framework that harnesses systematic mutation screens in the receptor binding domain of the viral Spike protein for escape prediction. The framework analyzes data on escape from multiple antibodies simultaneously, creating a latent representation of mutations that is shown to be effective in predicting escape and binding properties of the virus. We use this representation to validate the escape potential of current SARS-CoV-2 variants.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1664-8021
Relation: https://www.frontiersin.org/articles/10.3389/fgene.2022.886649/full; https://doaj.org/toc/1664-8021
DOI: 10.3389/fgene.2022.886649
URL الوصول: https://doaj.org/article/5a18e1ec506846c9b0fc0020fbf82356
رقم الانضمام: edsdoj.5a18e1ec506846c9b0fc0020fbf82356
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16648021
DOI:10.3389/fgene.2022.886649