Academic Journal

Fibonacci and Lucas Polynomials in n-gon

التفاصيل البيبلوغرافية
العنوان: Fibonacci and Lucas Polynomials in n-gon
المؤلفون: Kuloğlu Bahar, Özkan Engin, Marin Marin
المصدر: Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 31, Iss 2, Pp 127-140 (2023)
بيانات النشر: Sciendo, 2023.
سنة النشر: 2023
المجموعة: LCC:Mathematics
مصطلحات موضوعية: binet formula, lucas polynomials, fibonacci polynomials, recurrence relation, 11b37, 11b39, Mathematics, QA1-939
الوصف: In this paper, we bring into light, study the polygonal structure of Fibonacci polynomials that are placed clockwise on these by a number corresponding to each vertex. Also, we find the relation between the numbers with such vertices. We present a relation for obtained sequence in an n-gon yielding the m-th term formed at k vertices. Also, we apply these situations to Lucas polynomials and find new recurrence relations. Then, the numbers obtained by writing the coefficients of these polynomials in step form are shown in OEIS.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1844-0835
Relation: https://doaj.org/toc/1844-0835
DOI: 10.2478/auom-2023-0023
URL الوصول: https://doaj.org/article/58441774198c4fdc9d046e39639dd172
رقم الانضمام: edsdoj.58441774198c4fdc9d046e39639dd172
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:18440835
DOI:10.2478/auom-2023-0023