التفاصيل البيبلوغرافية
العنوان: |
Fibonacci and Lucas Polynomials in n-gon |
المؤلفون: |
Kuloğlu Bahar, Özkan Engin, Marin Marin |
المصدر: |
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 31, Iss 2, Pp 127-140 (2023) |
بيانات النشر: |
Sciendo, 2023. |
سنة النشر: |
2023 |
المجموعة: |
LCC:Mathematics |
مصطلحات موضوعية: |
binet formula, lucas polynomials, fibonacci polynomials, recurrence relation, 11b37, 11b39, Mathematics, QA1-939 |
الوصف: |
In this paper, we bring into light, study the polygonal structure of Fibonacci polynomials that are placed clockwise on these by a number corresponding to each vertex. Also, we find the relation between the numbers with such vertices. We present a relation for obtained sequence in an n-gon yielding the m-th term formed at k vertices. Also, we apply these situations to Lucas polynomials and find new recurrence relations. Then, the numbers obtained by writing the coefficients of these polynomials in step form are shown in OEIS. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
1844-0835 |
Relation: |
https://doaj.org/toc/1844-0835 |
DOI: |
10.2478/auom-2023-0023 |
URL الوصول: |
https://doaj.org/article/58441774198c4fdc9d046e39639dd172 |
رقم الانضمام: |
edsdoj.58441774198c4fdc9d046e39639dd172 |
قاعدة البيانات: |
Directory of Open Access Journals |