Academic Journal

Using GNSS Observations for Tropospheric Delay Prediction Using Artificial Intelligence

التفاصيل البيبلوغرافية
العنوان: Using GNSS Observations for Tropospheric Delay Prediction Using Artificial Intelligence
المؤلفون: Ahmed Sedeek
المصدر: Port Said Engineering Research Journal, Vol 27, Iss 4, Pp 34-39 (2023)
بيانات النشر: Port Said University, 2023.
سنة النشر: 2023
المجموعة: LCC:Engineering (General). Civil engineering (General)
مصطلحات موضوعية: atmosphere, gnss, precise point positioning, troposphere, Engineering (General). Civil engineering (General), TA1-2040
الوصف: GNSS technology holds significant importance across wide applications, ranging from mapping, surveying, and precise timekeeping to ship navigation. Its operational principle hinges on the accurate measurement of signal travel time, which is crucial for determining the distance between the GNSS satellite and the receiving device. However, the precision of GNSS positioning is often compromised due to various error sources that impact GNSS measurements. Among these sources, atmospheric effects are widely acknowledged as the primary contributors to spatially correlated inaccuracies in GNSS (Global Navigation Satellite System) measurements. The accuracy of zenith tropospheric delay (ZTD) and zenith wet delay (ZWD) prediction using an artificial neural network model was successfully demonstrated in this study. By combining data from GNSS observations and in-situ meteorological measurements, high-resolution water vapour data can be produced for reliable and accurate weather forecasting. The validation of the predictions revealed a mean standard deviation error of 5 mm and 3.6 mm for ZTD and ZWD, respectively. This study emphasizes the significance of estimating tropospheric wet delay in real-time weather forecasting applications.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1110-6603
2536-9377
Relation: https://pserj.journals.ekb.eg/article_323834_05d20538048e80a606adda7f20486cb9.pdf; https://doaj.org/toc/1110-6603; https://doaj.org/toc/2536-9377
DOI: 10.21608/pserj.2023.242830.1270
URL الوصول: https://doaj.org/article/579b361571094b28af3ebd72ab3b7385
رقم الانضمام: edsdoj.579b361571094b28af3ebd72ab3b7385
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:11106603
25369377
DOI:10.21608/pserj.2023.242830.1270