Academic Journal

LMOT: Efficient Light-Weight Detection and Tracking in Crowds

التفاصيل البيبلوغرافية
العنوان: LMOT: Efficient Light-Weight Detection and Tracking in Crowds
المؤلفون: Rana Mostafa, Hoda Baraka, Abdelmoniem Bayoumi
المصدر: IEEE Access, Vol 10, Pp 83085-83095 (2022)
بيانات النشر: IEEE, 2022.
سنة النشر: 2022
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Multi-object tracking, pedestrian tracking, joint detection and tracking, object detection, deep learning, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Multi-object tracking is a vital component in various robotics and computer vision applications. However, existing multi-object tracking techniques trade off computation runtime for tracking accuracy leading to challenges in deploying such pipelines in real-time applications. This paper introduces a novel real-time model, LMOT, i.e., Light-weight Multi-Object Tracker, that performs joint pedestrian detection and tracking. LMOT introduces a simplified DLA-34 encoder network to extract detection features for the current image that are computationally efficient. Furthermore, we generate efficient tracking features using a linear transformer for the prior image frame and its corresponding detection heatmap. After that, LMOT fuses both detection and tracking feature maps in a multi-layer scheme and performs a two-stage online data association relying on the Kalman filter to generate tracklets. We evaluated our model on the challenging real-world MOT16/17/20 datasets, showing LMOT significantly outperforms the state-of-the-art trackers concerning runtime while maintaining high robustness. LMOT is approximately ten times faster than state-of-the-art trackers while being only 3.8% behind in performance accuracy on average leading to a much computationally lighter model.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/9852199/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2022.3197157
URL الوصول: https://doaj.org/article/55277569243046348e990e4d951b6083
رقم الانضمام: edsdoj.55277569243046348e990e4d951b6083
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2022.3197157