Academic Journal

Multi-View Prototypical Transport for Unsupervised Domain Adaptation

التفاصيل البيبلوغرافية
العنوان: Multi-View Prototypical Transport for Unsupervised Domain Adaptation
المؤلفون: Sunhyeok Lee, Dae-Shik Kim
المصدر: IEEE Access, Vol 13, Pp 8482-8494 (2025)
بيانات النشر: IEEE, 2025.
سنة النشر: 2025
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Multi-view learning, optimal transport, prototypical learning, unsupervised domain adaptation, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Unsupervised Domain Adaptation (UDA) methods struggle to bridge the gap between a labeled source domain and an unlabeled target domain, particularly due to the rigidity of deep feature representations derived from the penultimate layer of backbone feature extractors. These deeper representations, while discriminative, often fail to generalize under distributional shifts due to their specificity. To overcome these limitations, we introduce a novel representation learning framework, Multi-view Prototypical Transport (MPT), which leverages a multi-view hypothesis model to integrate and utilize the general information present in shallower layers. This approach facilitates a more comprehensive understanding of the relationships among intermediate features. Additionally, our framework incorporates a novel multi-view prototypical learning strategy that not only transfers domain-general representations, but also significantly enhances robustness against target domain outliers. Extensive experimental evaluations on various benchmark datasets demonstrate that our method outperforms existing state-of-the-art UDA approaches, confirming the effectiveness of our strategy in adapting to complex domain shifts.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/10836683/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2025.3528054
URL الوصول: https://doaj.org/article/548dd03ddbda4c4d92542af3b9101998
رقم الانضمام: edsdoj.548dd03ddbda4c4d92542af3b9101998
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2025.3528054