Academic Journal

Deep edge intelligence-based solution for heart failure prediction in ambient assisted living

التفاصيل البيبلوغرافية
العنوان: Deep edge intelligence-based solution for heart failure prediction in ambient assisted living
المؤلفون: Md. Ishan Arefin Hossain, Anika Tabassum, Zia Ush Shamszaman
المصدر: Discover Internet of Things, Vol 3, Iss 1, Pp 1-17 (2023)
بيانات النشر: Springer, 2023.
سنة النشر: 2023
المجموعة: LCC:Computer engineering. Computer hardware
LCC:Computer software
مصطلحات موضوعية: Heart disease prediction, Edge intelligence, machine learning, IoT, Deep learning, Feed forward network, Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
الوصف: Abstract Heart failure and heart disease prediction in real-time is a highly significant necessity for the patients living under the observation of Internet of Things-based Ambient Assisted Living systems because cardiovascular diseases are the most common fatal chronic diseases. Most of the solutions regarding heart disease prediction in the Internet of Things-based medical systems are relying on server-based predictive analysis which can appear to be complex for generating real-time prediction notifications and unreliable in case of any network interruption occurrences. The suggested edge-based solution for the prediction of heart disease from collected sensor data in real-time using a proposed lightweight deep learning technique called Oversampled Quinary Feed Forward Network (OQFFN) provides a less complex framework and more reliable notification system in case of network failure for the disease prediction which also reduces the need of forwarding all the data to the server resulting in reduced network bottleneck.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2730-7239
Relation: https://doaj.org/toc/2730-7239
DOI: 10.1007/s43926-023-00043-4
URL الوصول: https://doaj.org/article/5473407e84524c028d142c8e6188a4f0
رقم الانضمام: edsdoj.5473407e84524c028d142c8e6188a4f0
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:27307239
DOI:10.1007/s43926-023-00043-4