التفاصيل البيبلوغرافية
العنوان: |
Enabling digital twins in the maritime sector through the lens of AI and industry 4.0 |
المؤلفون: |
Dimitrios Kaklis, Iraklis Varlamis, George Giannakopoulos, Takis J. Varelas, Constantine D. Spyropoulos |
المصدر: |
International Journal of Information Management Data Insights, Vol 3, Iss 2, Pp 100178- (2023) |
بيانات النشر: |
Elsevier, 2023. |
سنة النشر: |
2023 |
المجموعة: |
LCC:Information technology |
مصطلحات موضوعية: |
Fuel oil consumption estimation, Digital twin, Splines, Quadratic estimators, Delaunay triangulation, Time-series forecasting, Information technology, T58.5-58.64 |
الوصف: |
Sustainability and environmental compliance in ship operations is a prominent research topic as the waterborne sector is obliged to adopt ”green” mitigation strategies towards a low emissions operational blueprint. Fuel-Oil-Consumption (FOC) estimation, constitutes one of the key components in maritime transport information systems for efficiency and environmental compliance. This paper deals with FOC estimation in a more novel way than methods proposed in literature, by utilizing a reduced-sized feature set, which allows predicting vessel’s Main-Engine rotational speed (RPM). Furthermore, this work aims to place the deployment of such models in the broader context of a cutting-edge information system, to improve efficiency and regulatory adherence. Specifically, we integrate B-Splines in the context of two Deep Learning architectures and compare their performance against state-of-the-art regression techniques. Finally, we estimate FOC by combining velocity measurements and the predicted RPM with vessel-specific characteristics and illustrate the performance of our estimators against actual FOC data. |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2667-0968 |
Relation: |
http://www.sciencedirect.com/science/article/pii/S2667096823000253; https://doaj.org/toc/2667-0968 |
DOI: |
10.1016/j.jjimei.2023.100178 |
URL الوصول: |
https://doaj.org/article/5386ab96a38b42aaa9273cb754db67b6 |
رقم الانضمام: |
edsdoj.5386ab96a38b42aaa9273cb754db67b6 |
قاعدة البيانات: |
Directory of Open Access Journals |