Academic Journal

Deep Full-Body HPE for Activity Recognition from RGB Frames Only

التفاصيل البيبلوغرافية
العنوان: Deep Full-Body HPE for Activity Recognition from RGB Frames Only
المؤلفون: Sameh Neili Boualia, Najoua Essoukri Ben Amara
المصدر: Informatics, Vol 8, Iss 1, p 2 (2021)
بيانات النشر: MDPI AG, 2021.
سنة النشر: 2021
المجموعة: LCC:Information technology
مصطلحات موضوعية: human pose estimation, human activity recognition, deep learning, ConvNets, SVM, Information technology, T58.5-58.64
الوصف: Human Pose Estimation (HPE) is defined as the problem of human joints’ localization (also known as keypoints: elbows, wrists, etc.) in images or videos. It is also defined as the search for a specific pose in space of all articulated joints. HPE has recently received significant attention from the scientific community. The main reason behind this trend is that pose estimation is considered as a key step for many computer vision tasks. Although many approaches have reported promising results, this domain remains largely unsolved due to several challenges such as occlusions, small and barely visible joints, and variations in clothing and lighting. In the last few years, the power of deep neural networks has been demonstrated in a wide variety of computer vision problems and especially the HPE task. In this context, we present in this paper a Deep Full-Body-HPE (DFB-HPE) approach from RGB images only. Based on ConvNets, fifteen human joint positions are predicted and can be further exploited for a large range of applications such as gesture recognition, sports performance analysis, or human-robot interaction. To evaluate the proposed deep pose estimation model, we apply it to recognize the daily activities of a person in an unconstrained environment. Therefore, the extracted features, represented by deep estimated poses, are fed to an SVM classifier. To validate the proposed architecture, our approach is tested on two publicly available benchmarks for pose estimation and activity recognition, namely the J-HMDBand CAD-60datasets. The obtained results demonstrate the efficiency of the proposed method based on ConvNets and SVM and prove how deep pose estimation can improve the recognition accuracy. By means of comparison with state-of-the-art methods, we achieve the best HPE performance, as well as the best activity recognition precision on the CAD-60 dataset.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2227-9709
Relation: https://www.mdpi.com/2227-9709/8/1/2; https://doaj.org/toc/2227-9709
DOI: 10.3390/informatics8010002
URL الوصول: https://doaj.org/article/4b58615f1f084ce1bb340adcfd6ee23c
رقم الانضمام: edsdoj.4b58615f1f084ce1bb340adcfd6ee23c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22279709
DOI:10.3390/informatics8010002