Academic Journal

Machine learning-assisted extreme events forecasting in Kerr ring resonators

التفاصيل البيبلوغرافية
العنوان: Machine learning-assisted extreme events forecasting in Kerr ring resonators
المؤلفون: Coulibaly Saliya, Bessin Florent, Clerc Marcel, Mussot Arnaud
المصدر: EPJ Web of Conferences, Vol 287, p 08015 (2023)
بيانات النشر: EDP Sciences, 2023.
سنة النشر: 2023
المجموعة: LCC:Physics
مصطلحات موضوعية: Physics, QC1-999
الوصف: Predicting complex nonlinear dynamical systems has been even more urgent because of the emergence of extreme events such as earthquakes, volcanic eruptions, extreme weather events (lightning, hurricanes/cyclones, blizzards, tornadoes), and giant oceanic rogue waves, to mention a few. The recent milestones in the machine learning framework o↵er a new prospect in this area. For a high dimensional chaotic system, increasing the system’s size causes an augmentation of the complexity and, finally, the size of the artificial neural network. Here, we propose a new supervised machine learning strategy to locally forecast bursts occurring in the turbulent regime of a fiber ring cavity.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2100-014X
Relation: https://www.epj-conferences.org/articles/epjconf/pdf/2023/13/epjconf_eosam2023_08015.pdf; https://doaj.org/toc/2100-014X
DOI: 10.1051/epjconf/202328708015
URL الوصول: https://doaj.org/article/4b0ba66d935b4b568ccf15c1aebe632b
رقم الانضمام: edsdoj.4b0ba66d935b4b568ccf15c1aebe632b
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2100014X
DOI:10.1051/epjconf/202328708015