Academic Journal

Bitemporal Attention Transformer for Building Change Detection and Building Damage Assessment

التفاصيل البيبلوغرافية
العنوان: Bitemporal Attention Transformer for Building Change Detection and Building Damage Assessment
المؤلفون: Wen Lu, Lu Wei, Minh Nguyen
المصدر: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 4917-4935 (2024)
بيانات النشر: IEEE, 2024.
سنة النشر: 2024
المجموعة: LCC:Ocean engineering
LCC:Geophysics. Cosmic physics
مصطلحات موضوعية: Building change detection (BCD), building damage assessment (BDA), ordinal regression, transformer, Ocean engineering, TC1501-1800, Geophysics. Cosmic physics, QC801-809
الوصف: Building change detection (BCD) holds significant value in the context of monitoring land use, whereas building damage assessment (BDA) plays a crucial role in expediting humanitarian rescue efforts post-disasters. To address these needs, we propose the bitemporal attention module (BAM) as an innovative cross-attention mechanism aimed at effectively capturing spatio-temporal semantic relations between a pair of bitemporal remote sensing images. Within BAM, a shifted windowing scheme has been implemented to confine the scope of the cross-attention mechanism to a specific range, not only excluding remote and irrelevant information but also contributing to computational efficiency. Moreover, existing methods for BDA often overlook the inherent order of ordinal labels, treating the BDA task simplistically as a multiclass semantic segmentation problem. Recognizing the vital significance of ordinal relationships, we approach the BDA task as an ordinal regression problem. To address this, we introduce a rank-consistent ordinal regression loss function to train our proposed change detection network, bitemporal attention transformer. Our method achieves state-of-the-art accuracy on two BCD datasets (LEVIR-CD+ and S2Looking), as well as the largest BDA dataset (xBD).
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2151-1535
Relation: https://ieeexplore.ieee.org/document/10400761/; https://doaj.org/toc/2151-1535
DOI: 10.1109/JSTARS.2024.3354310
URL الوصول: https://doaj.org/article/492fd7f4f00b4ea090f543397ebc982c
رقم الانضمام: edsdoj.492fd7f4f00b4ea090f543397ebc982c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21511535
DOI:10.1109/JSTARS.2024.3354310