Academic Journal

Soft-Ranking Label Encoding for Robust Facial Age Estimation

التفاصيل البيبلوغرافية
العنوان: Soft-Ranking Label Encoding for Robust Facial Age Estimation
المؤلفون: Xusheng Zeng, Junyang Huang, Changxing Ding
المصدر: IEEE Access, Vol 8, Pp 134209-134218 (2020)
بيانات النشر: IEEE, 2020.
سنة النشر: 2020
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Age estimation, age encoding, facial attribute analysis, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Automatic facial age estimation can be used in a wide range of real-world applications. However, this process is challenging due to the randomness and slowness of the aging process. Accordingly, in this paper, we propose a novel method aimed at overcoming the challenges associated with facial age estimation. First, we propose a novel age encoding method, referred to as `Soft-ranking', which encodes two important properties of facial age, i.e., the ordinal property and the correlation between adjacent ages. Therefore, Soft-ranking provides a richer supervision signal for training deep models. Moreover, we carefully analyze existing evaluation protocols for age estimation, finding that the overlap in identity between the training and testing sets affects the relative performance of different age encoding methods. Moreover, we achieve state-of-the-art performance on four most popular age databases, i.e., Morph II, AgeDB, CLAP2015, and CLAP2016.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/9145576/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2020.3010815
URL الوصول: https://doaj.org/article/477bcc911330422d811b5a422b9ad7cc
رقم الانضمام: edsdoj.477bcc911330422d811b5a422b9ad7cc
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2020.3010815