Academic Journal

Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature

التفاصيل البيبلوغرافية
العنوان: Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
المؤلفون: Orlando Ragnisco, Ángel Ballesteros, Francisco J. Herranz, Fabio Musso
المصدر: Symmetry, Integrability and Geometry: Methods and Applications, Vol 3, p 026 (2007)
بيانات النشر: National Academy of Science of Ukraine, 2007.
سنة النشر: 2007
المجموعة: LCC:Mathematics
مصطلحات موضوعية: integrable systems, quantum groups, curvature, contraction, harmonic oscillator, Kepler-Coulomb, hyperbolic, de Sitter, Mathematics, QA1-939
الوصف: An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1815-0659
Relation: http://www.emis.de/journals/SIGMA/2007/026/; https://doaj.org/toc/1815-0659
URL الوصول: https://doaj.org/article/476c84b671214edfa9409a54b2dcd086
رقم الانضمام: edsdoj.476c84b671214edfa9409a54b2dcd086
قاعدة البيانات: Directory of Open Access Journals