Academic Journal

Dynamic PET Image Denoising Using Deep Convolutional Neural Networks Without Prior Training Datasets

التفاصيل البيبلوغرافية
العنوان: Dynamic PET Image Denoising Using Deep Convolutional Neural Networks Without Prior Training Datasets
المؤلفون: Fumio Hashimoto, Hiroyuki Ohba, Kibo Ote, Atsushi Teramoto, Hideo Tsukada
المصدر: IEEE Access, Vol 7, Pp 96594-96603 (2019)
بيانات النشر: IEEE, 2019.
سنة النشر: 2019
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Convolutional neural networks, deep image prior, deep learning, denoising, dynamic positron emission tomography, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Deep learning has attracted growing interest for application to medical imaging, such as positron emission tomography (PET), due to its excellent performance. Convolutional neural networks (CNNs), a facet of deep learning requires large training-image datasets. This presents a challenge in a clinical setting because it is difficult to prepare large, high-quality patient-related datasets. Recently, the deep image prior (DIP) approach has been devised, based on the fact that CNN structures have the intrinsic ability to solve inverse problems such as denoising without pre-training and do not require the preparation of training datasets. Herein, we proposed the dynamic PET image denoising using a DIP approach, with the PET data itself being used to reduce the statistical image noise. Static PET data were acquired for input to the network, with the dynamic PET images being handled as training labels, while the denoised dynamic PET images were represented by the network output. We applied the proposed DIP method to computer simulations and also to real data acquired from a living monkey brain with 18F-fluoro-2-deoxy-D-glucose (18F-FDG). As a simulation result, our DIP method produced less noisy and more accurate dynamic images than the other algorithms. Moreover, using real data, the DIP method was found to perform better than other types of post-denoising method in terms of contrast-to-noise ratio, and also maintain the contrast-to-noise ratio when resampling the list data to 1/5 and 1/10 of the original size, demonstrating that the DIP method could be applied to low-dose PET imaging. These results indicated that the proposed DIP method provides a promising means of post-denoising for dynamic PET images.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
Relation: https://ieeexplore.ieee.org/document/8764327/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2019.2929230
URL الوصول: https://doaj.org/article/d4701094f5b94878b8831baaf553f1e4
رقم الانضمام: edsdoj.4701094f5b94878b8831baaf553f1e4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2019.2929230