Academic Journal

Ultimate boundary estimations and topological horseshoe analysis of a new 4D hyper-chaotic system

التفاصيل البيبلوغرافية
العنوان: Ultimate boundary estimations and topological horseshoe analysis of a new 4D hyper-chaotic system
المؤلفون: Leilei Zhou, Zengqiang Chen, Jiezhi Wang, Qing Zhang
المصدر: Nonlinear Analysis, Vol 22, Iss 5 (2017)
بيانات النشر: Vilnius University Press, 2017.
سنة النشر: 2017
المجموعة: LCC:Analysis
مصطلحات موضوعية: hyper-chaotic system, ultimate bound, positively invariant set, globally exponentially attractive set, topological horseshoe, Analysis, QA299.6-433
الوصف: In this paper, we first estimate the boundedness of a new proposed 4-dimensional (4D) hyper-chaotic system with complex dynamical behaviors. For this system, the ultimate bound set Ω1 and globally exponentially attractive set Ω2 are derived based on the optimization method, Lyapunov stability theory and comparison principle. Numerical simulations are presented to show the effectiveness of the method and the boundary regions. Then, to prove the existence of hyper-chaos, the hyper-chaotic dynamics of the 4D nonlinear system is investigated by means of topological horseshoe theory and numerical computation. Based on the algorithm for finding horseshoes in three-dimensional hyper-chaotic maps, we finally find a horseshoe with two-directional expansions in the 4D hyper-chaotic system, which can rigorously prove the existence of the hyper-chaos in theory.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1392-5113
2335-8963
Relation: http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13367; https://doaj.org/toc/1392-5113; https://doaj.org/toc/2335-8963
DOI: 10.15388/NA.2017.5.1
URL الوصول: https://doaj.org/article/45bbe85dfe464634900d3d7de130d7d4
رقم الانضمام: edsdoj.45bbe85dfe464634900d3d7de130d7d4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:13925113
23358963
DOI:10.15388/NA.2017.5.1