Academic Journal
Ultimate boundary estimations and topological horseshoe analysis of a new 4D hyper-chaotic system
العنوان: | Ultimate boundary estimations and topological horseshoe analysis of a new 4D hyper-chaotic system |
---|---|
المؤلفون: | Leilei Zhou, Zengqiang Chen, Jiezhi Wang, Qing Zhang |
المصدر: | Nonlinear Analysis, Vol 22, Iss 5 (2017) |
بيانات النشر: | Vilnius University Press, 2017. |
سنة النشر: | 2017 |
المجموعة: | LCC:Analysis |
مصطلحات موضوعية: | hyper-chaotic system, ultimate bound, positively invariant set, globally exponentially attractive set, topological horseshoe, Analysis, QA299.6-433 |
الوصف: | In this paper, we first estimate the boundedness of a new proposed 4-dimensional (4D) hyper-chaotic system with complex dynamical behaviors. For this system, the ultimate bound set Ω1 and globally exponentially attractive set Ω2 are derived based on the optimization method, Lyapunov stability theory and comparison principle. Numerical simulations are presented to show the effectiveness of the method and the boundary regions. Then, to prove the existence of hyper-chaos, the hyper-chaotic dynamics of the 4D nonlinear system is investigated by means of topological horseshoe theory and numerical computation. Based on the algorithm for finding horseshoes in three-dimensional hyper-chaotic maps, we finally find a horseshoe with two-directional expansions in the 4D hyper-chaotic system, which can rigorously prove the existence of the hyper-chaos in theory. |
نوع الوثيقة: | article |
وصف الملف: | electronic resource |
اللغة: | English |
تدمد: | 1392-5113 2335-8963 |
Relation: | http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/13367; https://doaj.org/toc/1392-5113; https://doaj.org/toc/2335-8963 |
DOI: | 10.15388/NA.2017.5.1 |
URL الوصول: | https://doaj.org/article/45bbe85dfe464634900d3d7de130d7d4 |
رقم الانضمام: | edsdoj.45bbe85dfe464634900d3d7de130d7d4 |
قاعدة البيانات: | Directory of Open Access Journals |
تدمد: | 13925113 23358963 |
---|---|
DOI: | 10.15388/NA.2017.5.1 |