Academic Journal

Prediction of Fuel Debris Location in Fukushima Nuclear Power Plant using Machine Learning

التفاصيل البيبلوغرافية
العنوان: Prediction of Fuel Debris Location in Fukushima Nuclear Power Plant using Machine Learning
المؤلفون: Alrawash Saed, Hale Matthew F., Lennox Barry, Joyce Malcolm J., West Andrew, Watanabe Minoru, Zhang Zhongming, Aspinall Michael D.
المصدر: EPJ Web of Conferences, Vol 302, p 17004 (2024)
بيانات النشر: EDP Sciences, 2024.
سنة النشر: 2024
المجموعة: LCC:Physics
مصطلحات موضوعية: Physics, QC1-999
الوصف: Accurate fuel debris location is crucial part of the decommissioning of the Fukushima Nuclear Power plants. Conventional methods face challenges due to extreme radiation and complex structure of the materials involved. In this study, we propose a novel approach utilising neutron detection and machine learning to estimate fuel material location. Geant4 simulations and pythonTM scripts have been used to generate a comprehensive dataset to train a machine learning model using MATLAB’s regression learner. A Gaussian Process Regression model was chosen for training and prediction. The results show excellent prediction performance to estimate the corium thickness effectively and to locate the nuclear fuel material with a mean square error (MSE) of 0.01. By combining the machine learning with nuclear simulation codes, this promises to enhance the nuclear decommissioning efforts to retrieve nuclear fuel debris.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2100-014X
Relation: https://www.epj-conferences.org/articles/epjconf/pdf/2024/12/epjconf_snamc2024_17004.pdf; https://doaj.org/toc/2100-014X
DOI: 10.1051/epjconf/202430217004
URL الوصول: https://doaj.org/article/4573a71ac6104a308a2259451dcb8be2
رقم الانضمام: edsdoj.4573a71ac6104a308a2259451dcb8be2
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2100014X
DOI:10.1051/epjconf/202430217004