Academic Journal

SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology

التفاصيل البيبلوغرافية
العنوان: SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
المؤلفون: Alexander Mühlberg, Paul Ritter, Simon Langer, Chloë Goossens, Stefanie Nübler, Dominik Schneidereit, Oliver Taubmann, Felix Denzinger, Dominik Nörenberg, Michael Haug, Sebastian Schürmann, Roarke Horstmeyer, Andreas K. Maier, Wolfgang H. Goldmann, Oliver Friedrich, Lucas Kreiss
المصدر: Advanced Science, Vol 10, Iss 28, Pp n/a-n/a (2023)
بيانات النشر: Wiley, 2023.
سنة النشر: 2023
المجموعة: LCC:Science
مصطلحات موضوعية: deep learning, explainable artificial intelligence, meta‐learning, multiphoton microscopy, muscle research, prior information integration, Science
الوصف: Abstract Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis‐driven and extensive prior knowledge (priors) exists. To address this, the Self‐Enhancing Multi‐Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)‐based laboratory research is presented. It utilizes meta‐learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi‐task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state‐of‐the‐art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior‐only approaches.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2198-3844
Relation: https://doaj.org/toc/2198-3844
DOI: 10.1002/advs.202206319
URL الوصول: https://doaj.org/article/44bff05520d54a82863b2dbf105f2848
رقم الانضمام: edsdoj.44bff05520d54a82863b2dbf105f2848
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21983844
DOI:10.1002/advs.202206319