Academic Journal

Slope Failure Prediction Using Random Forest Machine Learning and LiDAR in an Eroded Folded Mountain Belt

التفاصيل البيبلوغرافية
العنوان: Slope Failure Prediction Using Random Forest Machine Learning and LiDAR in an Eroded Folded Mountain Belt
المؤلفون: Aaron E. Maxwell, Maneesh Sharma, James S. Kite, Kurt A. Donaldson, James A. Thompson, Matthew L. Bell, Shannon M. Maynard
المصدر: Remote Sensing, Vol 12, Iss 3, p 486 (2020)
بيانات النشر: MDPI AG, 2020.
سنة النشر: 2020
المجموعة: LCC:Science
مصطلحات موضوعية: slope failures, landslides, light detection and ranging, lidar, digital terrain analysis, machine learning, random forest, spatial predictive modeling, Science
الوصف: The probabilistic mapping of landslide occurrence at a high spatial resolution and over a large geographic extent is explored using random forests (RF) machine learning; light detection and ranging (LiDAR)-derived terrain variables; additional variables relating to lithology, soils, distance to roads and streams and cost distance to roads and streams; and training data interpreted from high spatial resolution LiDAR-derivatives. Using a large training set and all predictor variables, an area under the receiver operating characteristic (ROC) curve (AUC) of 0.946 is obtained. Our findings highlight the value of a large training dataset, the incorporation of a variety of terrain variables and the use of variable window sizes to characterize the landscape at different spatial scales. We also document important variables for mapping slope failures. Our results suggest that feature selection is not required to improve the RF modeling results and that incorporating multiple models using different pseudo absence samples is not necessary. From our findings and based on a review of prior studies, we make recommendations for high spatial resolution, large-area slope failure probabilistic mapping.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2072-4292
Relation: https://www.mdpi.com/2072-4292/12/3/486; https://doaj.org/toc/2072-4292
DOI: 10.3390/rs12030486
URL الوصول: https://doaj.org/article/dd44a790d4584273bd5ca5dfd9c6ffc8
رقم الانضمام: edsdoj.44a790d4584273bd5ca5dfd9c6ffc8
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20724292
DOI:10.3390/rs12030486