Academic Journal

Surface-Based Ultrasound Scans for the Screening of Prostate Cancer

التفاصيل البيبلوغرافية
العنوان: Surface-Based Ultrasound Scans for the Screening of Prostate Cancer
المؤلفون: Rory Bennett, Tristan Barrett, Vincent J. Gnanapragasam, Zion Tse
المصدر: IEEE Open Journal of Engineering in Medicine and Biology, Vol 6, Pp 212-218 (2025)
بيانات النشر: IEEE, 2025.
سنة النشر: 2025
المجموعة: LCC:Computer applications to medicine. Medical informatics
LCC:Medical technology
مصطلحات موضوعية: Abdominal ultrasound, machine learning, prostate cancer, PSA-density, surface-based ultrasound, Computer applications to medicine. Medical informatics, R858-859.7, Medical technology, R855-855.5
الوصف: Surface-based ultrasound (SUS) systems have undergone substantial improvement over the years in image quality, ease-of-use, and reduction in size. Their ability to image organs non-invasively makes them a prime technology for the diagnosis and monitoring of various diseases and conditions. An example is the screening/risk- stratification of prostate cancer (PCa) using prostate-specific antigen density (PSAD). Current literature predominantly focuses on prostate volume (PV) estimation techniques that make use of magnetic resonance imaging (MRI) or transrectal ultrasound (TRUS) imaging, while SUS techniques are largely overlooked. If a reliable SUS PCa screening method can be introduced, patients may be able to forgo unnecessary MRI or TRUS scans. Such a screening procedure could be introduced into standard primary care settings with point-of-care ultrasound systems available at a fraction of the cost of their larger hospital counterparts. This review analyses whether literature suggests it is possible to use SUS-derived PV in the calculation of PSAD.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2644-1276
Relation: https://ieeexplore.ieee.org/document/10758798/; https://doaj.org/toc/2644-1276
DOI: 10.1109/OJEMB.2024.3503494
URL الوصول: https://doaj.org/article/3e642d1d39474ee188f66c77ea7822e8
رقم الانضمام: edsdoj.3e642d1d39474ee188f66c77ea7822e8
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26441276
DOI:10.1109/OJEMB.2024.3503494