Academic Journal

Clinical tooth segmentation based on local enhancement

التفاصيل البيبلوغرافية
العنوان: Clinical tooth segmentation based on local enhancement
المؤلفون: Jipeng Wu, Ming Zhang, Delong Yang, Feng Wei, Naian Xiao, Lei Shi, Huifeng Liu, Peng Shang
المصدر: Frontiers in Molecular Biosciences, Vol 9 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Biology (General)
مصطلحات موضوعية: tooth segmentation, decoder, local enhancement, ASPP, CNN, Biology (General), QH301-705.5
الوصف: The tooth arrangements of human beings are challenging to accurately observe when relying on dentists’ naked eyes, especially for dental caries in children, which is difficult to detect. Cone-beam computer tomography (CBCT) is used as an auxiliary method to measure patients’ teeth, including children. However, subjective and irreproducible manual measurements are required during this process, which wastes much time and energy for the dentists. Therefore, a fast and accurate tooth segmentation algorithm that can replace repeated calculations and annotations in manual segmentation has tremendous clinical significance. This study proposes a local contextual enhancement model for clinical dental CBCT images. The local enhancement model, which is more suitable for dental CBCT images, is proposed based on the analysis of the existing contextual models. Then, the local enhancement model is fused into an encoder–decoder framework for dental CBCT images. At last, extensive experiments are conducted to validate our method.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2296-889X
Relation: https://www.frontiersin.org/articles/10.3389/fmolb.2022.932348/full; https://doaj.org/toc/2296-889X
DOI: 10.3389/fmolb.2022.932348
URL الوصول: https://doaj.org/article/3d14ceb86715413e8f336a9caa8ce315
رقم الانضمام: edsdoj.3d14ceb86715413e8f336a9caa8ce315
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2296889X
DOI:10.3389/fmolb.2022.932348