Academic Journal

SKIN RASH CLASSIFICATION SYSTEM USING MODIFIED DENSENET201 THROUGH RANDOM SEARCH FOR HYPERPARAMETER TUNING

التفاصيل البيبلوغرافية
العنوان: SKIN RASH CLASSIFICATION SYSTEM USING MODIFIED DENSENET201 THROUGH RANDOM SEARCH FOR HYPERPARAMETER TUNING
المؤلفون: Fayza Nayla Riyana Putri, R.Rizal Isnanto, Aris Sugiharto
المصدر: Jurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi, Vol 12, Iss 4 (2024)
بيانات النشر: Informatics Department, Engineering Faculty, 2024.
سنة النشر: 2024
المجموعة: LCC:Electronic computers. Computer science
مصطلحات موضوعية: Classification, DenseNet201, Hyperparameter, Random Search, Skin Rasheh, Electronic computers. Computer science, QA75.5-76.95
الوصف: Skin rashes caused by various diseases, such as monkeypox, cowpox, chickenpox, measles, and HFMD, often present similar symptoms, making accurate diagnosis challenging. This study aims to improve the classification of skin diseases through the application of a modified DenseNet-201 architecture combined with hyperparameter optimization using Random Search. The base DenseNet-201 model, with pre-trained weights, was first tested, achieving an accuracy of 63%, with the highest performance in the Healthy and HFMD classes. The proposed modified model, optimized using Random Search, improved overall accuracy to 80%, with enhanced precision, recall, and F1-score across most classes. The model’s performance was particularly notable in the HFMD and normal skin classes, although further improvements are needed for challenging classes like Cowpox and Measles. The findings highlight the potential of Random Search for hyperparameter tuning to enhance the performance of deep convolutional neural networks in the medical image classification domain, offering a promising tool for efficient and accurate skin disease detection.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 0216-0544
2301-6914
Relation: https://kursorjournal.org/index.php/kursor/article/view/418; https://doaj.org/toc/0216-0544; https://doaj.org/toc/2301-6914
DOI: 10.21107/kursor.v12i4.418
URL الوصول: https://doaj.org/article/3c3c75d9a3f141058b2d1767424ffd3d
رقم الانضمام: edsdoj.3c3c75d9a3f141058b2d1767424ffd3d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:02160544
23016914
DOI:10.21107/kursor.v12i4.418