التفاصيل البيبلوغرافية
العنوان: |
Low-Complexity Decoder for Overloaded Uniquely Decodable Synchronous CDMA |
المؤلفون: |
Michel Kulhandjian, Hovannes Kulhandjian, Claude D'Amours, Halim Yanikomeroglu, Dimitris A. Pados, Gurgen Khachatrian |
المصدر: |
IEEE Access, Vol 10, Pp 46255-46275 (2022) |
بيانات النشر: |
IEEE, 2022. |
سنة النشر: |
2022 |
المجموعة: |
LCC:Electrical engineering. Electronics. Nuclear engineering |
مصطلحات موضوعية: |
Uniquely decodable (UD) codes, overloaded CDMA, overloaded binary and ternary spreading spreading codes, Electrical engineering. Electronics. Nuclear engineering, TK1-9971 |
الوصف: |
We consider the problem of designing a low-complexity decoder for antipodal uniquely decodable (UD) /errorless code sets for overloaded synchronous code-division multiple access (CDMA) systems, where the number of signals $K_{\mathrm{max}}^{a}$ is the largest known for the given code length $L$ . In our complexity analysis, we illustrate that compared to maximum-likelihood (ML) decoder, which has an exponential computational complexity for even moderate code lengths, the proposed decoder has a quasi-quadratic computational complexity. Simulation results in terms of bit-error-rate (BER) demonstrate that the performance of the proposed decoder has only a $1-2$ dB degradation in signal-to-noise ratio (SNR) at a BER of 10−3 when compared to ML. Moreover, we derive the proof of the minimum Manhattan distance of such UD codes and we provide the proofs for the propositions; these proofs constitute the foundation of the formal proof for the maximum number users $K_{\mathrm{max}}^{a}$ for $L=8$ . |
نوع الوثيقة: |
article |
وصف الملف: |
electronic resource |
اللغة: |
English |
تدمد: |
2169-3536 |
Relation: |
https://ieeexplore.ieee.org/document/9762979/; https://doaj.org/toc/2169-3536 |
DOI: |
10.1109/ACCESS.2022.3170491 |
URL الوصول: |
https://doaj.org/article/3be6cf2916fe46c4b74e08f67c178fee |
رقم الانضمام: |
edsdoj.3be6cf2916fe46c4b74e08f67c178fee |
قاعدة البيانات: |
Directory of Open Access Journals |