Academic Journal

Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

التفاصيل البيبلوغرافية
العنوان: Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation
المؤلفون: Jose V. Frances-Villora, Manuel Bataller-Mompean, Azeddine Mjahad, Alfredo Rosado-Muñoz, Antonio Gutierrez Martin, Vicent Teruel-Marti, Vicente Villanueva, Kevin G. Hampel, Juan F. Guerrero-Martinez
المصدر: Applied Sciences, Vol 10, Iss 3, p 827 (2020)
بيانات النشر: MDPI AG, 2020.
سنة النشر: 2020
المجموعة: LCC:Technology
LCC:Engineering (General). Civil engineering (General)
LCC:Biology (General)
LCC:Physics
LCC:Chemistry
مصطلحات موضوعية: electroencephalogram, epileptic eeg signal classification, epilepsy, epileptogenic focus, real-time implementation, fpga, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
الوصف: The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2076-3417
Relation: https://www.mdpi.com/2076-3417/10/3/827; https://doaj.org/toc/2076-3417
DOI: 10.3390/app10030827
URL الوصول: https://doaj.org/article/e3a0211cf41348dd9b41ac58a9b043b9
رقم الانضمام: edsdoj.3a0211cf41348dd9b41ac58a9b043b9
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20763417
DOI:10.3390/app10030827